論文の概要: Instruction Position Matters in Sequence Generation with Large Language
Models
- arxiv url: http://arxiv.org/abs/2308.12097v1
- Date: Wed, 23 Aug 2023 12:36:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-24 14:18:39.737274
- Title: Instruction Position Matters in Sequence Generation with Large Language
Models
- Title(参考訳): 大規模言語モデルを用いたシーケンス生成における命令位置問題
- Authors: Yijin Liu, Xianfeng Zeng, Fandong Meng, Jie Zhou
- Abstract要約: 大規模言語モデル(LLM)は、翻訳や要約といった条件付きシーケンス生成タスクを実行することができる。
入力文の後にタスク命令の位置をシフトさせることにより,LLMの指示追従能力を向上させることを提案する。
- 参考スコア(独自算出の注目度): 67.87516654892343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are capable of performing conditional sequence
generation tasks, such as translation or summarization, through instruction
fine-tuning. The fine-tuning data is generally sequentially concatenated from a
specific task instruction, an input sentence, and the corresponding response.
Considering the locality modeled by the self-attention mechanism of LLMs, these
models face the risk of instruction forgetting when generating responses for
long input sentences. To mitigate this issue, we propose enhancing the
instruction-following capability of LLMs by shifting the position of task
instructions after the input sentences. Theoretical analysis suggests that our
straightforward method can alter the model's learning focus, thereby
emphasizing the training of instruction-following capabilities. Concurrently,
experimental results demonstrate that our approach consistently outperforms
traditional settings across various model scales (1B / 7B / 13B) and different
sequence generation tasks (translation and summarization), without any
additional data or annotation costs. Notably, our method significantly improves
the zero-shot performance on conditional sequence generation, e.g., up to 9.7
BLEU points on WMT zero-shot translation tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、命令の微調整によって、翻訳や要約などの条件付きシーケンス生成タスクを実行することができる。
微調整データは、通常、特定のタスク命令、入力文、および対応する応答から順次連結される。
LLMの自己認識機構によってモデル化された局所性を考えると、これらのモデルは長い入力文に対する応答を生成する際に、命令を忘れるリスクに直面している。
そこで本研究では,入力文の後にタスク命令の位置をシフトすることで,llmの命令追従能力を向上させることを提案する。
理論的解析により,本手法は学習の焦点を変えることが可能であることが示唆された。
同時に,本手法は様々なモデルスケール(1B / 7B / 13B)と異なるシーケンス生成タスク(1B / 7B / 13B)において,追加データやアノテーションのコストを伴わずに,従来よりも優れた性能を示すことを示す。
特に,WMTゼロショット翻訳タスクにおいて,条件付きシーケンス生成におけるゼロショット性能を最大9.7BLEU点まで向上させる。
関連論文リスト
- SwitchCIT: Switching for Continual Instruction Tuning of Large Language Models [14.085371250265224]
大規模言語モデル(LLM)は、様々な領域、特に一般的な言語理解において印象的な能力を発揮している。
しかし、これらのモデルは大量のテキストデータに基づいて訓練されており、命令によって引き起こされる特定のタスクに対して微妙に最適化されていないかもしれない。
本研究は, LLMの連続的な命令学習において, パラメータ効率の高いチューニングモデルに演算をルーティングする切替機構を通じて, 破滅的な忘れに対処するものである。
論文 参考訳(メタデータ) (2024-07-16T14:37:33Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Don't Half-listen: Capturing Key-part Information in Continual Instruction Tuning [13.535110749767451]
キーパート情報ゲイン(KPIG)に基づく新しい連続的命令チューニング手法を提案する。
本手法は,マスク部分の情報ゲインを計算し,データを動的に再生し,トレーニング対象を洗練させる。
実験により,本手法は観察タスクと保留タスクの両方において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-03-15T06:54:20Z) - Fine-tuning Large Language Models with Sequential Instructions [2.546845645875049]
既存の命令調整モデルでは、複数の命令でクエリに応答するのに苦労していることがわかった。
我々は、微調整データの一部がシーケンシャルに関連したタスクの連鎖を含むべきであると論じる。
既存のデータセットの命令を多種多様な複雑なシーケンシャルな命令に変換することで、このプロセスを自動化する。
逐次指導チューニングを行ったモデルでは、符号化、数学、オープンエンド生成の結果が改善された。
論文 参考訳(メタデータ) (2024-03-12T16:33:30Z) - In-context Learning Generalizes, But Not Always Robustly: The Case of Syntax [36.98247762224868]
In-context Learning (ICL)は、現在、大規模言語モデル(LLM)の新しいタスクを教える一般的な方法である。
モデルは、文脈によって定義されたタスクの基盤構造を推論するか、あるいは、同じ分散例にのみ一般化する表面一般化に依存するか?
GPT, PaLM, および Llama 2 ファミリーのモデルを用いた実験では, LM 間で大きなばらつきが認められた。
この分散は、モデルサイズよりも事前学習コーパスと監督方法の構成によりより説明される。
論文 参考訳(メタデータ) (2023-11-13T23:52:43Z) - BLISS: Robust Sequence-to-Sequence Learning via Self-Supervised Input
Representation [92.75908003533736]
本稿では,自己教師型入力表現を用いたフレームワークレベルの頑健なシーケンス・ツー・シーケンス学習手法BLISSを提案する。
我々は,機械翻訳,文法的誤り訂正,テキスト要約など,BLISSの様々なタスクにおける有効性を検証するための総合的な実験を行った。
論文 参考訳(メタデータ) (2022-04-16T16:19:47Z) - Skill Induction and Planning with Latent Language [94.55783888325165]
我々は、ゴールがハイレベルなサブタスク記述のシーケンスを生成するアクションシーケンスの生成モデルを定式化する。
本稿では、このモデルを、主に注釈のないデモを用いて、名前付きハイレベルなサブタスクのシーケンスに解析する方法について述べる。
訓練されたモデルでは、自然言語コマンドの空間はスキルのライブラリを索引付けする;エージェントはこれらのスキルを使って、新しい目標に適した高いレベルの命令シーケンスを生成する。
論文 参考訳(メタデータ) (2021-10-04T15:36:32Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
マスク言語モデル(MLM)トレーニングの印象的なパフォーマンスの可能な説明は、そのようなモデルがNLPパイプラインで広く普及している構文構造を表現することを学びました。
本稿では,先行訓練がダウンストリームタスクでほぼ完全に成功する理由として,高次単語共起統計をモデル化できることを挙げる。
以上の結果から,純粋分布情報は,事前学習の成功を主に説明し,深い言語知識を必要とする難易度評価データセットのキュレーションの重要性を強調する。
論文 参考訳(メタデータ) (2021-04-14T06:30:36Z) - COCO-LM: Correcting and Contrasting Text Sequences for Language Model
Pretraining [59.169836983883656]
COCO-LMは、チャレンジングなエラーとテキストシーケンスの変換によって言語モデルを事前学習する新しい自己監視学習フレームワークです。
COCO-LMは、オリジナルのテキストシーケンスでマスク&予測トークンに補助言語モデルを採用しています。
分析の結果,coco-lmのアドバンテージは,困難なトレーニング信号,よりコンテキスト化されたトークン表現,正規化されたシーケンス表現であることがわかった。
論文 参考訳(メタデータ) (2021-02-16T22:24:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。