Counterfactual Explanations for Oblique Decision Trees: Exact, Efficient
Algorithms
- URL: http://arxiv.org/abs/2103.01096v1
- Date: Mon, 1 Mar 2021 16:04:33 GMT
- Title: Counterfactual Explanations for Oblique Decision Trees: Exact, Efficient
Algorithms
- Authors: Miguel \'A. Carreira-Perpi\~n\'an and Suryabhan Singh Hada
- Abstract summary: We consider counterfactual explanations, the problem of minimally adjusting features in a source input instance so that it is classified as a target class under a given classification.
This has become a topic of recent interest as a way to query a trained model and suggest possible actions to overturn its decision.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider counterfactual explanations, the problem of minimally adjusting
features in a source input instance so that it is classified as a target class
under a given classifier. This has become a topic of recent interest as a way
to query a trained model and suggest possible actions to overturn its decision.
Mathematically, the problem is formally equivalent to that of finding
adversarial examples, which also has attracted significant attention recently.
Most work on either counterfactual explanations or adversarial examples has
focused on differentiable classifiers, such as neural nets. We focus on
classification trees, both axis-aligned and oblique (having hyperplane splits).
Although here the counterfactual optimization problem is nonconvex and
nondifferentiable, we show that an exact solution can be computed very
efficiently, even with high-dimensional feature vectors and with both
continuous and categorical features, and demonstrate it in different datasets
and settings. The results are particularly relevant for finance, medicine or
legal applications, where interpretability and counterfactual explanations are
particularly important.
Related papers
- Even-if Explanations: Formal Foundations, Priorities and Complexity [18.126159829450028]
We show that both linear and tree-based models are strictly more interpretable than neural networks.
We introduce a preference-based framework that enables users to personalize explanations based on their preferences.
arXiv Detail & Related papers (2024-01-17T11:38:58Z) - Generating collective counterfactual explanations in score-based
classification via mathematical optimization [4.281723404774889]
A counterfactual explanation of an instance indicates how this instance should be minimally modified so that the perturbed instance is classified in the desired class.
Most of the Counterfactual Analysis literature focuses on the single-instance single-counterfactual setting.
By means of novel Mathematical Optimization models, we provide a counterfactual explanation for each instance in a group of interest.
arXiv Detail & Related papers (2023-10-19T15:18:42Z) - On Computing Probabilistic Abductive Explanations [30.325691263226968]
The most widely studied explainable AI (XAI) approaches are unsound.
PI-explanations also exhibit important drawbacks, the most visible of which is arguably their size.
This paper investigates practical approaches for computing relevant sets for a number of widely used classifiers.
arXiv Detail & Related papers (2022-12-12T15:47:10Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
We show that learning a small neural network to perform canonicalization is better than using predefineds.
Our experiments show that learning the canonicalization function is competitive with existing techniques for learning equivariant functions across many tasks.
arXiv Detail & Related papers (2022-11-11T21:58:15Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
We show that a phenomenon can be precisely characterized in the context of kernel methods.
We consider the minimization of a quadratic objective in a separable Hilbert space, and show that with early stopping, the choice of learning rate influences the spectral decomposition of the obtained solution.
arXiv Detail & Related papers (2022-02-28T13:01:04Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Fundamental Limits and Tradeoffs in Invariant Representation Learning [99.2368462915979]
Many machine learning applications involve learning representations that achieve two competing goals.
Minimax game-theoretic formulation represents a fundamental tradeoff between accuracy and invariance.
We provide an information-theoretic analysis of this general and important problem under both classification and regression settings.
arXiv Detail & Related papers (2020-12-19T15:24:04Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - Removing Bias in Multi-modal Classifiers: Regularization by Maximizing
Functional Entropies [88.0813215220342]
Some modalities can more easily contribute to the classification results than others.
We develop a method based on the log-Sobolev inequality, which bounds the functional entropy with the functional-Fisher-information.
On the two challenging multi-modal datasets VQA-CPv2 and SocialIQ, we obtain state-of-the-art results while more uniformly exploiting the modalities.
arXiv Detail & Related papers (2020-10-21T07:40:33Z) - On Supervised Classification of Feature Vectors with Independent and
Non-Identically Distributed Elements [10.52087851034255]
We investigate the problem of classifying feature vectors with mutually independent but non-identically distributed elements.
We show that the error probability goes to zero as the length of the feature vectors grows, even when there is only one training feature vector per label available.
arXiv Detail & Related papers (2020-08-01T06:49:50Z) - Classifier-independent Lower-Bounds for Adversarial Robustness [13.247278149124757]
We theoretically analyse the limits of robustness to test-time adversarial and noisy examples in classification.
We use optimal transport theory to derive variational formulae for the Bayes-optimal error a classifier can make on a given classification problem.
We derive explicit lower-bounds on the Bayes-optimal error in the case of the popular distance-based attacks.
arXiv Detail & Related papers (2020-06-17T16:46:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.