論文の概要: DTW-Merge: A Novel Data Augmentation Technique for Time Series
Classification
- arxiv url: http://arxiv.org/abs/2103.01119v1
- Date: Mon, 1 Mar 2021 16:40:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-04 12:53:13.257168
- Title: DTW-Merge: A Novel Data Augmentation Technique for Time Series
Classification
- Title(参考訳): DTW-Merge: 時系列分類のための新しいデータ拡張技術
- Authors: Mohammad Akyash, Hoda Mohammadzade, Hamid Behroozi
- Abstract要約: 本稿では,動的時間ワーピングに基づく時系列の新たなデータ拡張手法を提案する。
提案されたアプローチを最近紹介したResNetは、2018年のUCR時系列分類アーカイブで結果の改善を明らかにしている。
- 参考スコア(独自算出の注目度): 6.091096843566857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, neural networks achieved much success in various
applications. The main challenge in training deep neural networks is the lack
of sufficient data to improve the model's generalization and avoid overfitting.
One of the solutions is to generate new training samples. This paper proposes a
novel data augmentation method for time series based on Dynamic Time Warping.
This method is inspired by the concept that warped parts of two time series
have the same temporal properties. Exploiting the proposed approach with
recently-introduced ResNet reveals the improvement of results on the 2018 UCR
Time Series Classification Archive.
- Abstract(参考訳): 近年、ニューラルネットワークは様々なアプリケーションで大きな成功を収めている。
ディープニューラルネットワークのトレーニングの主な課題は、モデルの一般化を改善し、オーバーフィットを回避するのに十分なデータがないことである。
解決策の1つは、新しいトレーニングサンプルを生成することです。
本稿では,動的時間ワーピングに基づく時系列の新たなデータ拡張手法を提案する。
この方法は、2つの時系列の反り部分は同じ時間特性を有するという概念に触発される。
提案されたアプローチを最近紹介したResNetは、2018年のUCR時系列分類アーカイブで結果の改善を明らかにしている。
関連論文リスト
- cs-net: structural approach to time-series forecasting for
high-dimensional feature space data with limited observations [1.5533753199073637]
本研究では,高次元多変量予測タスクに優れたフレキシブルなデータ特徴抽出手法を提案する。
我々のアプローチは、もともとNational Science Foundation (NSF) Algorithms for Threat Detection (ATD) 2022 Challengeのために開発された。
我々のモデルは、GDELTデータセットでトレーニングされ、ATDスプリントシリーズの第1位と第2位に終わり、時系列予測のための他のデータセットを約束します。
論文 参考訳(メタデータ) (2022-12-05T19:46:47Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
本研究は、時系列異常検出のための新しい生成モデルであるDGHLを提示する。
トップダウンの畳み込みネットワークは、新しい階層的な潜在空間を時系列ウィンドウにマッピングし、時間ダイナミクスを利用して情報を効率的にエンコードする。
提案手法は,4つのベンチマーク・データセットにおいて,現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-02-15T17:19:44Z) - Voice2Series: Reprogramming Acoustic Models for Time Series
Classification [65.94154001167608]
Voice2Seriesは、時系列分類のための音響モデルをプログラムする新しいエンドツーエンドアプローチである。
V2Sは20のタスクで性能が優れるか、最先端のメソッドと結びついているかを示し、平均精度を1.84%向上させる。
論文 参考訳(メタデータ) (2021-06-17T07:59:15Z) - Optimizing Convergence for Iterative Learning of ARIMA for Stationary
Time Series [1.9444242128493845]
この研究は、近年ニューラルネットワークの学習に普及した計算コストの低いOnline Gradient Descent最適化方法に焦点を当てている。
異なるオンライングラデーション学習者(Adam、AMSGrad、Adagrad、Nesterovなど)を組み合わせた新しいアプローチを提案し、迅速な収束を実現します。
論文 参考訳(メタデータ) (2021-01-25T12:07:46Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - An Empirical Survey of Data Augmentation for Time Series Classification
with Neural Networks [17.20906062729132]
時系列データの拡張手法とそのニューラルネットワークを用いた時系列分類への応用について検討する。
分類法を提案し,時系列データ拡張における4つのファミリについて概説する。
6種類のニューラルネットワークを用いた128の時系列分類データセットに対して,12の時系列データ拡張手法を実験的に評価した。
論文 参考訳(メタデータ) (2020-07-31T10:33:54Z) - Time Series Data Augmentation for Neural Networks by Time Warping with a
Discriminative Teacher [17.20906062729132]
本稿では,ガイド付きワープと呼ばれる新しい時系列データ拡張を提案する。
ガイド付きワープは動的時間ワープ(DTW)と形状DTWの要素アライメント特性を利用する。
我々は、深部畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)を用いて、2015 UCR Time Series Archiveにある85のデータセットすべてに対する手法の評価を行った。
論文 参考訳(メタデータ) (2020-04-19T06:33:44Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z) - Lipreading using Temporal Convolutional Networks [57.41253104365274]
現在の単語認識モデルは,残差ネットワークと双方向Gated Recurrent Unit層で構成されている。
このモデルの限界に対処し、その性能をさらに向上させる変更を提案する。
提案モデルでは,これらのデータセットにおいてそれぞれ1.2%と3.2%の絶対的な改善が得られた。
論文 参考訳(メタデータ) (2020-01-23T17:49:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。