Unsupervised Word Segmentation with Bi-directional Neural Language Model
- URL: http://arxiv.org/abs/2103.01421v1
- Date: Tue, 2 Mar 2021 02:21:22 GMT
- Title: Unsupervised Word Segmentation with Bi-directional Neural Language Model
- Authors: Lihao Wang, Zongyi Li, Xiaoqing Zheng
- Abstract summary: We present an unsupervised word segmentation model, in which the learning objective is to maximize the generation probability of a sentence.
In order to better capture the long- and short-term dependencies, we propose to use bi-directional neural language models.
Two decoding algorithms are also described to combine the context features from both directions to generate the final segmentation.
- Score: 11.269066294359138
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an unsupervised word segmentation model, in which the learning
objective is to maximize the generation probability of a sentence given its all
possible segmentation. Such generation probability can be factorized into the
likelihood of each possible segment given the context in a recursive way. In
order to better capture the long- and short-term dependencies, we propose to
use bi-directional neural language models to better capture the features of
segment's context. Two decoding algorithms are also described to combine the
context features from both directions to generate the final segmentation, which
helps to reconcile word boundary ambiguities. Experimental results showed that
our context-sensitive unsupervised segmentation model achieved state-of-the-art
at different evaluation settings on various data sets for Chinese, and the
comparable result for Thai.
Related papers
- Explainable Metric Learning for Deflating Data Bias [2.977255700811213]
We present an explainable metric learning framework, which constructs hierarchical levels of semantic segments of an image for better interpretability.
Our approach enables a more human-understandable similarity measurement between two images based on the semantic segments within it.
arXiv Detail & Related papers (2024-07-05T21:07:27Z) - Activity Grammars for Temporal Action Segmentation [71.03141719666972]
temporal action segmentation aims at translating an untrimmed activity video into a sequence of action segments.
This paper introduces an effective activity grammar to guide neural predictions for temporal action segmentation.
Experimental results demonstrate that our method significantly improves temporal action segmentation in terms of both performance and interpretability.
arXiv Detail & Related papers (2023-12-07T12:45:33Z) - Universal Segmentation at Arbitrary Granularity with Language
Instruction [59.76130089644841]
We present UniLSeg, a universal segmentation model that can perform segmentation at any semantic level with the guidance of language instructions.
For training UniLSeg, we reorganize a group of tasks from original diverse distributions into a unified data format, where images with texts describing segmentation targets as input and corresponding masks are output.
arXiv Detail & Related papers (2023-12-04T04:47:48Z) - Unsupervised Chunking with Hierarchical RNN [62.15060807493364]
This paper introduces an unsupervised approach to chunking, a syntactic task that involves grouping words in a non-hierarchical manner.
We present a two-layer Hierarchical Recurrent Neural Network (HRNN) designed to model word-to-chunk and chunk-to-sentence compositions.
Experiments on the CoNLL-2000 dataset reveal a notable improvement over existing unsupervised methods, enhancing phrase F1 score by up to 6 percentage points.
arXiv Detail & Related papers (2023-09-10T02:55:12Z) - Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling [0.0]
The black-box structure of the deep neural network in pre-trained language models seriously limits the interpretability of the language modeling process.
A Word-Context-Coupled Space (W2CSpace) is proposed by introducing the alignment processing between uninterpretable neural representation and interpretable statistical logic.
Our language model can achieve better performance and highly credible interpretable ability compared to related state-of-the-art methods.
arXiv Detail & Related papers (2023-05-19T09:26:02Z) - Associating Spatially-Consistent Grouping with Text-supervised Semantic
Segmentation [117.36746226803993]
We introduce self-supervised spatially-consistent grouping with text-supervised semantic segmentation.
Considering the part-like grouped results, we further adapt a text-supervised model from image-level to region-level recognition.
Our method achieves 59.2% mIoU and 32.4% mIoU on Pascal VOC and Pascal Context benchmarks.
arXiv Detail & Related papers (2023-04-03T16:24:39Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
We propose a new open-world semantic segmentation pipeline that makes the first attempt to learn to segment semantic objects of various open-world categories without any efforts on dense annotations.
Our method can directly segment objects of arbitrary categories, outperforming zero-shot segmentation methods that require data labeling on three benchmark datasets.
arXiv Detail & Related papers (2022-07-18T09:20:04Z) - Single Model Ensemble for Subword Regularized Models in Low-Resource
Machine Translation [25.04086897886412]
Subword regularizations use multiple subword segmentations during training to improve the robustness of neural machine translation models.
We propose an inference strategy to address this discrepancy.
Experimental results show that the proposed strategy improves the performance of models trained with subword regularization.
arXiv Detail & Related papers (2022-03-25T09:25:47Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
We propose attentional prototype inference (API), a probabilistic latent variable framework for few-shot segmentation.
We define a global latent variable to represent the prototype of each object category, which we model as a probabilistic distribution.
We conduct extensive experiments on four benchmarks, where our proposal obtains at least competitive and often better performance than state-of-the-art prototype-based methods.
arXiv Detail & Related papers (2021-05-14T06:58:44Z) - Neural Sequence Segmentation as Determining the Leftmost Segments [25.378188980430256]
We propose a novel framework that incrementally segments natural language sentences at segment level.
For every step in segmentation, it recognizes the leftmost segment of the remaining sequence.
We have conducted extensive experiments on syntactic chunking and Chinese part-of-speech tagging across 3 datasets.
arXiv Detail & Related papers (2021-04-15T03:35:03Z) - Two-Level Transformer and Auxiliary Coherence Modeling for Improved Text
Segmentation [9.416757363901295]
We introduce a novel supervised model for text segmentation with simple but explicit coherence modeling.
Our model -- a neural architecture consisting of two hierarchically connected Transformer networks -- is a multi-task learning model that couples the sentence-level segmentation objective with the coherence objective that differentiates correct sequences of sentences from corrupt ones.
arXiv Detail & Related papers (2020-01-03T17:06:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.