Explainable Metric Learning for Deflating Data Bias
- URL: http://arxiv.org/abs/2407.04866v1
- Date: Fri, 5 Jul 2024 21:07:27 GMT
- Title: Explainable Metric Learning for Deflating Data Bias
- Authors: Emma Andrews, Prabhat Mishra,
- Abstract summary: We present an explainable metric learning framework, which constructs hierarchical levels of semantic segments of an image for better interpretability.
Our approach enables a more human-understandable similarity measurement between two images based on the semantic segments within it.
- Score: 2.977255700811213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image classification is an essential part of computer vision which assigns a given input image to a specific category based on the similarity evaluation within given criteria. While promising classifiers can be obtained through deep learning models, these approaches lack explainability, where the classification results are hard to interpret in a human-understandable way. In this paper, we present an explainable metric learning framework, which constructs hierarchical levels of semantic segments of an image for better interpretability. The key methodology involves a bottom-up learning strategy, starting by training the local metric learning model for the individual segments and then combining segments to compose comprehensive metrics in a tree. Specifically, our approach enables a more human-understandable similarity measurement between two images based on the semantic segments within it, which can be utilized to generate new samples to reduce bias in a training dataset. Extensive experimental evaluation demonstrates that the proposed approach can drastically improve model accuracy compared with state-of-the-art methods.
Related papers
- Preview-based Category Contrastive Learning for Knowledge Distillation [53.551002781828146]
We propose a novel preview-based category contrastive learning method for knowledge distillation (PCKD)
It first distills the structural knowledge of both instance-level feature correspondence and the relation between instance features and category centers.
It can explicitly optimize the category representation and explore the distinct correlation between representations of instances and categories.
arXiv Detail & Related papers (2024-10-18T03:31:00Z) - A Bayesian Approach to Weakly-supervised Laparoscopic Image Segmentation [1.9639956888747314]
We study weakly-supervised laparoscopic image segmentation with sparse annotations.
We introduce a novel Bayesian deep learning approach designed to enhance both the accuracy and interpretability of the model's segmentation.
arXiv Detail & Related papers (2024-10-11T04:19:48Z) - Enhancing Instance-Level Image Classification with Set-Level Labels [12.778150812879034]
We present a novel approach to enhance instance-level image classification by leveraging set-level labels.
We conduct experiments on two categories of datasets: natural image datasets and histopathology image datasets.
Our algorithm achieves 13% improvement in classification accuracy compared to the strongest baseline on the histopathology image classification benchmarks.
arXiv Detail & Related papers (2023-11-09T03:17:03Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification.
The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains the information of input words in a sample.
A multi-level visualization, which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to individual samples.
arXiv Detail & Related papers (2022-06-19T08:55:07Z) - Semantic Clustering based Deduction Learning for Image Recognition and
Classification [19.757743366620613]
The paper proposes a semantic clustering based deduction learning by mimicking the learning and thinking process of human brains.
The proposed approach is supported theoretically and empirically through extensive experiments.
arXiv Detail & Related papers (2021-12-25T01:31:21Z) - Interpretable and Interactive Deep Multiple Instance Learning for Dental
Caries Classification in Bitewing X-rays [6.98282810587309]
We propose a simple and efficient image classification architecture based on deep multiple instance learning.
Our approach contributes in two ways: First, it outputs a heatmap of local patch classification probabilities despite being trained with weak image-level labels.
In contrast to existing methods, the human user can faithfully interpret predictions and interact with the model to decide which regions to attend to.
arXiv Detail & Related papers (2021-12-17T14:09:27Z) - Deep Relational Metric Learning [84.95793654872399]
This paper presents a deep relational metric learning framework for image clustering and retrieval.
We learn an ensemble of features that characterizes an image from different aspects to model both interclass and intraclass distributions.
Experiments on the widely-used CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate that our framework improves existing deep metric learning methods and achieves very competitive results.
arXiv Detail & Related papers (2021-08-23T09:31:18Z) - Learning from Partially Overlapping Labels: Image Segmentation under
Annotation Shift [68.6874404805223]
We propose several strategies for learning from partially overlapping labels in the context of abdominal organ segmentation.
We find that combining a semi-supervised approach with an adaptive cross entropy loss can successfully exploit heterogeneously annotated data.
arXiv Detail & Related papers (2021-07-13T09:22:24Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
We propose a novel few-shot learning method via optimizing and fast adapting the query sample representation based on very few reference samples.
As demonstrated experimentally, the proposed model achieves state-of-the-art classification results on various benchmark few-shot classification and fine-grained recognition datasets.
arXiv Detail & Related papers (2020-08-06T05:52:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.