ActiveGuard: An Active DNN IP Protection Technique via Adversarial
Examples
- URL: http://arxiv.org/abs/2103.01527v1
- Date: Tue, 2 Mar 2021 07:16:20 GMT
- Title: ActiveGuard: An Active DNN IP Protection Technique via Adversarial
Examples
- Authors: Mingfu Xue, Shichang Sun, Can He, Yushu Zhang, Jian Wang, Weiqiang Liu
- Abstract summary: ActiveGuard exploits adversarial examples as users' fingerprints to distinguish authorized users from unauthorized users.
For ownership verification, the embedded watermark can be successfully extracted, while the normal performance of the DNN model will not be affected.
- Score: 10.058070050660104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The training of Deep Neural Networks (DNN) is costly, thus DNN can be
considered as the intellectual properties (IP) of model owners. To date, most
of the existing protection works focus on verifying the ownership after the DNN
model is stolen, which cannot resist piracy in advance. To this end, we propose
an active DNN IP protection method based on adversarial examples against DNN
piracy, named ActiveGuard. ActiveGuard aims to achieve authorization control
and users' fingerprints management through adversarial examples, and can
provide ownership verification. Specifically, ActiveGuard exploits the
elaborate adversarial examples as users' fingerprints to distinguish authorized
users from unauthorized users. Legitimate users can enter fingerprints into DNN
for identity authentication and authorized usage, while unauthorized users will
obtain poor model performance due to an additional control layer. In addition,
ActiveGuard enables the model owner to embed a watermark into the weights of
DNN. When the DNN is illegally pirated, the model owner can extract the
embedded watermark and perform ownership verification. Experimental results
show that, for authorized users, the test accuracy of LeNet-5 and Wide Residual
Network (WRN) models are 99.15% and 91.46%, respectively, while for
unauthorized users, the test accuracy of the two DNNs are only 8.92% (LeNet-5)
and 10% (WRN), respectively. Besides, each authorized user can pass the
fingerprint authentication with a high success rate (up to 100%). For ownership
verification, the embedded watermark can be successfully extracted, while the
normal performance of the DNN model will not be affected. Further, ActiveGuard
is demonstrated to be robust against fingerprint forgery attack, model
fine-tuning attack and pruning attack.
Related papers
- IDEA: An Inverse Domain Expert Adaptation Based Active DNN IP Protection Method [8.717704777664604]
Illegitimate reproduction, distribution and derivation of Deep Neural Network (DNN) models can inflict economic loss, reputation damage and even privacy infringement.
We propose IDEA, an Inverse Domain Expert Adaptation based proactive DNN IP protection method featuring active authorization and source traceability.
We extensively evaluate IDEA on five datasets and four DNN models to demonstrate its effectiveness in authorization control, culprit tracing success rate, and against various attacks.
arXiv Detail & Related papers (2024-09-29T09:34:33Z) - Who Leaked the Model? Tracking IP Infringers in Accountable Federated Learning [51.26221422507554]
Federated learning (FL) is an effective collaborative learning framework to coordinate data and computation resources from massive and distributed clients in training.
Such collaboration results in non-trivial intellectual property (IP) represented by the model parameters that should be protected and shared by the whole party rather than an individual user.
To block such IP leakage, it is essential to make the IP identifiable in the shared model and locate the anonymous infringer who first leaks it.
We propose Decodable Unique Watermarking (DUW) for complying with the requirements of accountable FL.
arXiv Detail & Related papers (2023-12-06T00:47:55Z) - Towards Robust Model Watermark via Reducing Parametric Vulnerability [57.66709830576457]
backdoor-based ownership verification becomes popular recently, in which the model owner can watermark the model.
We propose a mini-max formulation to find these watermark-removed models and recover their watermark behavior.
Our method improves the robustness of the model watermarking against parametric changes and numerous watermark-removal attacks.
arXiv Detail & Related papers (2023-09-09T12:46:08Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - InFIP: An Explainable DNN Intellectual Property Protection Method based
on Intrinsic Features [12.037142903022891]
We propose an interpretable intellectual property protection method for Deep Neural Networks (DNNs) based on explainable artificial intelligence.
The proposed method does not modify the DNN model, and the decision of the ownership verification is interpretable.
Experimental results demonstrate that the fingerprints can be successfully used to verify the ownership of the model.
arXiv Detail & Related papers (2022-10-14T03:12:36Z) - Untargeted Backdoor Watermark: Towards Harmless and Stealthy Dataset
Copyright Protection [69.59980270078067]
We explore the untargeted backdoor watermarking scheme, where the abnormal model behaviors are not deterministic.
We also discuss how to use the proposed untargeted backdoor watermark for dataset ownership verification.
arXiv Detail & Related papers (2022-09-27T12:56:56Z) - PCPT and ACPT: Copyright Protection and Traceability Scheme for DNN
Models [13.043683635373213]
Deep neural networks (DNNs) have achieved tremendous success in artificial intelligence (AI) fields.
DNN models can be easily illegally copied, redistributed, or abused by criminals.
arXiv Detail & Related papers (2022-06-06T12:12:47Z) - Detect and remove watermark in deep neural networks via generative
adversarial networks [10.058070050660104]
We propose a scheme to detect and remove watermark in deep neural networks via generative adversarial networks (GAN)
In the first phase, we use the GAN and few clean images to detect and reverse the watermark in the DNN model.
In the second phase, we fine-tune the watermarked DNN based on the reversed backdoor images.
arXiv Detail & Related papers (2021-06-15T12:45:22Z) - HufuNet: Embedding the Left Piece as Watermark and Keeping the Right
Piece for Ownership Verification in Deep Neural Networks [16.388046449021466]
We propose a novel solution for watermarking deep neural networks (DNNs)
HufuNet is highly robust against model fine-tuning/pruning, kernels cutoff/supplement, functionality-equivalent attack, and fraudulent ownership claims.
arXiv Detail & Related papers (2021-03-25T06:55:22Z) - Deep Serial Number: Computational Watermarking for DNN Intellectual
Property Protection [53.40245698216239]
DSN (Deep Serial Number) is a watermarking algorithm designed specifically for deep neural networks (DNNs)
Inspired by serial numbers in safeguarding conventional software IP, we propose the first implementation of serial number embedding within DNNs.
arXiv Detail & Related papers (2020-11-17T21:42:40Z) - Defending against Backdoor Attack on Deep Neural Networks [98.45955746226106]
We study the so-called textitbackdoor attack, which injects a backdoor trigger to a small portion of training data.
Experiments show that our method could effectively decrease the attack success rate, and also hold a high classification accuracy for clean images.
arXiv Detail & Related papers (2020-02-26T02:03:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.