論文の概要: A Brief Survey on Deep Learning Based Data Hiding, Steganography and
Watermarking
- arxiv url: http://arxiv.org/abs/2103.01607v1
- Date: Tue, 2 Mar 2021 10:01:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-03 15:40:14.014977
- Title: A Brief Survey on Deep Learning Based Data Hiding, Steganography and
Watermarking
- Title(参考訳): 深層学習に基づくデータ隠蔽, ステレオグラフィー, 透かしに関する簡易調査
- Authors: Chaoning Zhang, Chenguo Lin, Philipp Benz, Kejiang Chen, Weiming Zhang
and In So Kweon
- Abstract要約: 既存の文献を簡潔かつ包括的にレビューし,3つのメタアーキテクチャを概説する。
そこで本研究では,ステガノグラフィ,ライトフィールドメッセージング,ウォーターマーキングなど,深層隠れの応用に関する具体的な戦略を概説する。
- 参考スコア(独自算出の注目度): 98.1953404873897
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data hiding is the art of concealing messages with limited perceptual
changes. Recently, deep learning has provided enriching perspectives for it and
made significant progress. In this work, we conduct a brief yet comprehensive
review of existing literature and outline three meta-architectures. Based on
this, we summarize specific strategies for various applications of deep hiding,
including steganography, light field messaging and watermarking. Finally,
further insight into deep hiding is provided through incorporating the
perspective of adversarial attack.
- Abstract(参考訳): データ非表示は、限られた知覚的変化でメッセージを隠す技術です。
近年、深層学習はそれに対する豊富な視点を提供し、大きな進歩を遂げています。
本稿では,既存の文献を簡潔かつ包括的にレビューし,3つのメタアーキテクチャを概説する。
そこで本研究では,ステガノグラフィ,ライトフィールドメッセージング,ウォーターマーキングなど,深層隠れの応用に関する具体的な戦略を概説する。
最後に、敵攻撃の視点を取り入れることで、深い隠れに関するさらなる洞察を提供する。
関連論文リスト
- Learning Background Prompts to Discover Implicit Knowledge for Open Vocabulary Object Detection [101.15777242546649]
Open vocabulary Object Detection (OVD) は、ベースと新規の両方のカテゴリからオブジェクトを認識できる最適なオブジェクト検出器を求めることを目的としている。
近年の進歩は、知識蒸留を利用して、事前訓練された大規模視覚言語モデルからオブジェクト検出のタスクに洞察力のある知識を伝達している。
本稿では,暗黙的背景知識を活用するための学習バックグラウンドプロンプトを提案するため,LBPと呼ばれる新しいOVDフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-01T17:32:26Z) - A Comprehensive Survey of 3D Dense Captioning: Localizing and Describing
Objects in 3D Scenes [80.20670062509723]
3Dシークエンスキャプションは、3Dシーンの詳細な説明を作成することを目的とした、視覚言語によるブリッジングタスクである。
2次元の視覚的キャプションと比較して、現実世界の表現が密接なため、大きな可能性と課題が提示される。
既存手法の人気と成功にもかかわらず、この分野の進歩を要約した総合的な調査は乏しい。
論文 参考訳(メタデータ) (2024-03-12T10:04:08Z) - A Brief Yet In-Depth Survey of Deep Learning-Based Image Watermarking [1.249418440326334]
本稿では,ディープラーニングに基づく画像透かしに関する総合的な調査を行う。
カバーイメージ内の透かしの埋め込みと抽出に重点を置いており、堅牢性と適応性のシームレスなブレンドを提供することを目的としている。
本稿では,フィールドを埋め込み抽出器,特徴変換としてのディープネットワーク,ハイブリッドメソッドに分割する,洗練された分類手法を提案する。
論文 参考訳(メタデータ) (2023-08-08T22:06:14Z) - Deep Learning for Visual Speech Analysis: A Survey [54.53032361204449]
本稿では,視覚音声分析におけるディープラーニング手法の最近の進歩を概観する。
私たちは、基本的な問題、課題、ベンチマークデータセット、既存のメソッドの分類、最先端のパフォーマンスなど、視覚音声のさまざまな側面をカバーしています。
論文 参考訳(メタデータ) (2022-05-22T14:44:53Z) - Deep Depth Completion: A Survey [26.09557446012222]
我々は、読者が研究動向をよりよく把握し、現在の進歩を明確に理解するのに役立つ総合的な文献レビューを提供する。
ネットワークアーキテクチャ,損失関数,ベンチマークデータセット,学習戦略の設計面から,関連する研究について検討する。
室内および屋外のデータセットを含む,広く使用されている2つのベンチマークデータセットに対して,モデル性能の定量的比較を行った。
論文 参考訳(メタデータ) (2022-05-11T08:24:00Z) - Scene Graph Generation: A Comprehensive Survey [35.80909746226258]
シーングラフは、その強力な意味表現とシーン理解への応用から研究の焦点となっている。
SGG(Scene Graph Generation)とは、画像を自動的にセマンティックなシーングラフにマッピングするタスクである。
本稿では,異なる入力モダリティをカバーする138の代表的な作品についてレビューし,既存の画像ベースSGGの手法を体系的に要約する。
論文 参考訳(メタデータ) (2022-01-03T00:55:33Z) - Data Hiding with Deep Learning: A Survey Unifying Digital Watermarking
and Steganography [33.12806297686689]
デジタル透かしとステガノグラフィー技術は、機密性のある知的財産を保護し、秘密の通信を可能にするために用いられる。
デジタル透かしとステガノグラフィーをソフトウェア工学で統合し、セキュリティを強化し、リスクを軽減する研究の方向性が提案され、計画されている。
論文 参考訳(メタデータ) (2021-07-20T07:03:23Z) - Deep Learning for Scene Classification: A Survey [48.57123373347695]
シーン分類は、コンピュータビジョンにおける長年の、根本的かつ挑戦的な問題である。
大規模データセットの出現と深層学習技術のルネッサンスは、シーン表現と分類の分野において顕著な進歩をもたらした。
本稿では,深層学習によるシーン分類における最近の成果を総合的に調査する。
論文 参考訳(メタデータ) (2021-01-26T03:06:50Z) - Deep Learning for Free-Hand Sketch: A Survey [159.63186738971953]
フリーハンドのスケッチは非常に図像的であり、古代から現代にかけての物や物語を描くために人間によって広く用いられてきた。
最近のタッチスクリーンデバイスの普及により、スケッチ作成はこれまでになく簡単になり、スケッチ指向のアプリケーションがますます人気を博している。
論文 参考訳(メタデータ) (2020-01-08T16:23:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。