論文の概要: Deep Depth Completion: A Survey
- arxiv url: http://arxiv.org/abs/2205.05335v1
- Date: Wed, 11 May 2022 08:24:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-13 04:39:36.109999
- Title: Deep Depth Completion: A Survey
- Title(参考訳): Deep Depth Completion: 調査
- Authors: Junjie Hu, Chenyu Bao, Mete Ozay, Chenyou Fan, Qing Gao, Honghai Liu,
Tin Lun Lam
- Abstract要約: 我々は、読者が研究動向をよりよく把握し、現在の進歩を明確に理解するのに役立つ総合的な文献レビューを提供する。
ネットワークアーキテクチャ,損失関数,ベンチマークデータセット,学習戦略の設計面から,関連する研究について検討する。
室内および屋外のデータセットを含む,広く使用されている2つのベンチマークデータセットに対して,モデル性能の定量的比較を行った。
- 参考スコア(独自算出の注目度): 26.09557446012222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depth completion aims at predicting dense pixel-wise depth from a sparse map
captured from a depth sensor. It plays an essential role in various
applications such as autonomous driving, 3D reconstruction, augmented reality,
and robot navigation. Recent successes on the task have been demonstrated and
dominated by deep learning based solutions. In this article, for the first
time, we provide a comprehensive literature review that helps readers better
grasp the research trends and clearly understand the current advances. We
investigate the related studies from the design aspects of network
architectures, loss functions, benchmark datasets, and learning strategies with
a proposal of a novel taxonomy that categorizes existing methods. Besides, we
present a quantitative comparison of model performance on two widely used
benchmark datasets, including an indoor and an outdoor dataset. Finally, we
discuss the challenges of prior works and provide readers with some insights
for future research directions.
- Abstract(参考訳): 深度補正は、深度センサから取得したスパースマップから高密度画素幅の深さを予測することを目的としている。
自動運転、3D再構築、拡張現実、ロボットナビゲーションなど、さまざまな応用において重要な役割を果たす。
このタスクの最近の成功は、ディープラーニングベースのソリューションによって実証され、支配されている。
本稿では,本論文で初めて,読者が研究動向をより深く把握し,現在の進歩を明確に理解するための総合的な文献レビューを行う。
本研究では,ネットワークアーキテクチャ,損失関数,ベンチマークデータセット,学習戦略の設計的側面から,既存の手法を分類する新しい分類法を提案する。
また,屋内データセットと屋外データセットを含む2つのベンチマークデータセットにおけるモデル性能の定量的比較を行った。
最後に,先行研究の課題を議論し,今後の研究方向性に関する洞察を読者に提供する。
- 全文 参考訳へのリンク
関連論文リスト
- Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
ディープラーニングは、ニューラルネットワークアーキテクチャエンジニアリングに対する需要の高まりにつながっている。
ニューラルネットワーク検索(NAS)は、手動ではなく、データ駆動方式でニューラルネットワークアーキテクチャを自動設計することを目的としている。
NASはコンピュータビジョンの幅広い問題に適用されている。
論文 参考訳(メタデータ) (2022-02-15T08:06:50Z) - 3D Object Detection from Images for Autonomous Driving: A Survey [85.50614909714929]
画像から3Dオブジェクトを検出することは、自動運転の基本的かつ困難な問題の一つだ。
この問題を2015年から2021年にかけて200以上の研究が行われ、理論、アルゴリズム、応用の幅広い範囲で研究されている。
我々は,この新奇で継続的な研究分野を包括的に調査し,画像に基づく3D検出に最もよく使用されるパイプラインを要約する。
論文 参考訳(メタデータ) (2022-02-07T07:12:24Z) - Deep Learning Schema-based Event Extraction: Literature Review and
Current Trends [60.29289298349322]
ディープラーニングに基づくイベント抽出技術が研究ホットスポットとなっている。
本稿では,ディープラーニングモデルに焦点をあて,最先端のアプローチを見直し,そのギャップを埋める。
論文 参考訳(メタデータ) (2021-07-05T16:32:45Z) - Deep Learning on Monocular Object Pose Detection and Tracking: A
Comprehensive Overview [8.442460766094674]
オブジェクトのポーズ検出と追跡は、自律運転、ロボット工学、拡張現実など、多くの分野で広く応用されているため、注目を集めている。
ディープラーニングは、他のものよりも優れたパフォーマンスを示した最も有望なものです。
本稿では,ディープラーニング技術経路に属するオブジェクトのポーズ検出と追跡の最近の進歩を概観する。
論文 参考訳(メタデータ) (2021-05-29T12:59:29Z) - A Design Space Study for LISTA and Beyond [79.76740811464597]
近年では、反復アルゴリズムの展開による問題固有のディープネットワーク構築に大きな成功を収めている。
本稿では,深層ネットワークにおける設計アプローチとしてのアンローリングの役割について再考する。
スパースリカバリのためのlistaを代表例として,未ロールモデルに対する設計空間調査を初めて実施した。
論文 参考訳(メタデータ) (2021-04-08T23:01:52Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
オブジェクトインスタンスの大規模なコレクションの複数のビューからモデルを学ぶことに重点を置いています。
再構成を大幅に改善するワープコンディショニングレイ埋め込み(WCR)と呼ばれる新しいニューラルネットワーク設計を提案する。
本評価は,既存のベンチマークを用いた複数の深部単眼再構成ベースラインに対する性能改善を示す。
論文 参考訳(メタデータ) (2021-03-30T17:57:01Z) - Deep Gait Recognition: A Survey [15.47582611826366]
歩行認識は、歩き方に基づいて個人を識別することを目的とした魅力的な生体測定モダリティです。
ディープラーニングは、差別的な表現を自動的に学習する能力によって、2015年からこの分野の研究環境を再構築した。
深層学習による歩行認識のブレークスルーと最近の展開を総合的に紹介します。
論文 参考訳(メタデータ) (2021-02-18T18:49:28Z) - Deep Learning for Scene Classification: A Survey [48.57123373347695]
シーン分類は、コンピュータビジョンにおける長年の、根本的かつ挑戦的な問題である。
大規模データセットの出現と深層学習技術のルネッサンスは、シーン表現と分類の分野において顕著な進歩をもたらした。
本稿では,深層学習によるシーン分類における最近の成果を総合的に調査する。
論文 参考訳(メタデータ) (2021-01-26T03:06:50Z) - Deep Learning for Road Traffic Forecasting: Does it Make a Difference? [6.220008946076208]
本稿では,このITS研究領域におけるDeep Learningの活用に言及した技術の現状を批判的に分析することに焦点を当てる。
後続の批判分析は、交通予測のためのディープラーニングの問題について、質問を定式化し、必要な議論を引き起こす。
論文 参考訳(メタデータ) (2020-12-02T15:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。