論文の概要: Decomposing lexical and compositional syntax and semantics with deep
language models
- arxiv url: http://arxiv.org/abs/2103.01620v1
- Date: Tue, 2 Mar 2021 10:24:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-03 17:05:53.412935
- Title: Decomposing lexical and compositional syntax and semantics with deep
language models
- Title(参考訳): 深層言語モデルを用いた語彙・構成構文・意味論の分解
- Authors: Charlotte Caucheteux, Alexandre Gramfort, Jean-Remi King
- Abstract要約: GPT2のような言語変換器の活性化は、音声理解中の脳活動に線形にマップすることが示されている。
本稿では,言語モデルの高次元アクティベーションを,語彙,構成,構文,意味表現の4つのクラスに分類する分類法を提案する。
その結果は2つの結果が浮かび上がった。
まず、構成表現は、語彙よりも広範な皮質ネットワークを募集し、両側の側頭、頭頂、前頭前皮質を包含する。
- 参考スコア(独自算出の注目度): 82.81964713263483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The activations of language transformers like GPT2 have been shown to
linearly map onto brain activity during speech comprehension. However, the
nature of these activations remains largely unknown and presumably conflate
distinct linguistic classes. Here, we propose a taxonomy to factorize the
high-dimensional activations of language models into four combinatorial
classes: lexical, compositional, syntactic, and semantic representations. We
then introduce a statistical method to decompose, through the lens of GPT2's
activations, the brain activity of 345 subjects recorded with functional
magnetic resonance imaging (fMRI) during the listening of ~4.6 hours of
narrated text. The results highlight two findings. First, compositional
representations recruit a more widespread cortical network than lexical ones,
and encompass the bilateral temporal, parietal and prefrontal cortices. Second,
contrary to previous claims, syntax and semantics are not associated with
separated modules, but, instead, appear to share a common and distributed
neural substrate. Overall, this study introduces a general framework to isolate
the distributed representations of linguistic constructs generated in
naturalistic settings.
- Abstract(参考訳): GPT2のような言語変換器の活性化は、音声理解中の脳活動に線形にマップすることが示されている。
しかし、これらの活性化の性質は未知であり、おそらく異なる言語分類を混同している。
本稿では,言語モデルの高次元アクティベーションを,語彙,構成,構文,意味表現の4つの組み合わせクラスに分類する分類法を提案する。
次に、GPT2の活性化のレンズを通して、約4.6時間のナレーションテキストの聴取中に、機能的磁気共鳴画像(fMRI)で記録された345人の脳活動を分解する統計的方法を紹介した。
その結果は2つの結果が浮かび上がった。
まず、構成表現は、語彙よりも広範な皮質ネットワークを募集し、両側の側頭、頭頂、前頭前皮質を包含する。
第二に、以前の主張に反して、構文とセマンティクスは分離されたモジュールに関連づけられず、代わりに共通の分散ニューラルネットワークを共有するように見える。
全体として、本研究は自然主義的な設定で生成された言語構成の分散表現を分離する一般的な枠組みを導入する。
関連論文リスト
- Sylber: Syllabic Embedding Representation of Speech from Raw Audio [25.703703711031178]
クリーンでロバストな音節構造を持つ音声表現を生成する新モデルSylberを提案する。
具体的には,教師モデルの指数移動平均である教師モデルから抽出した音節セグメントの特徴を回帰する自己教師型モデルを提案する。
1) 高速で線形な音節分割アルゴリズム,2) 平均4.27トークン毎の効率的な音節トークン化,3) 語彙的・構文的理解に適した音節単位。
論文 参考訳(メタデータ) (2024-10-09T17:59:04Z) - Analysis of Argument Structure Constructions in a Deep Recurrent Language Model [0.0]
本稿では,再帰型ニューラルネットワークモデルにおけるArgument Structure Constructions(ASC)の表現と処理について検討する。
その結果, 文表現は, 全層にまたがる4つのASCに対応する異なるクラスタを形成することがわかった。
これは、脳に拘束された比較的単純なリカレントニューラルネットワークでさえ、様々な構成タイプを効果的に区別できることを示している。
論文 参考訳(メタデータ) (2024-08-06T09:27:41Z) - Acoustic characterization of speech rhythm: going beyond metrics with
recurrent neural networks [0.0]
我々は,21言語における音声記録の大規模データベース上で,言語識別タスク上で繰り返しニューラルネットワークを訓練する。
ネットワークは、40%のケースで10秒の録音の言語を識別することができ、その3分の2はトップ3の推測だった。
論文 参考訳(メタデータ) (2024-01-22T09:49:44Z) - Can Linguistic Knowledge Improve Multimodal Alignment in Vision-Language
Pretraining? [34.609984453754656]
本研究の目的は,意味表現や構文構造を含む包括的言語知識がマルチモーダルアライメントに与える影響を明らかにすることである。
具体的には、最初の大規模マルチモーダルアライメント探索ベンチマークであるSNAREを設計、リリースする。
論文 参考訳(メタデータ) (2023-08-24T16:17:40Z) - Agentivit\`a e telicit\`a in GilBERTo: implicazioni cognitive [77.71680953280436]
本研究の目的は,トランスフォーマーに基づくニューラルネットワークモデルが語彙意味論を推論するかどうかを検討することである。
考慮される意味的性質は、テリシティ(定性とも組み合わされる)と作用性である。
論文 参考訳(メタデータ) (2023-07-06T10:52:22Z) - Information-Restricted Neural Language Models Reveal Different Brain
Regions' Sensitivity to Semantics, Syntax and Context [87.31930367845125]
テキストコーパスを用いて語彙言語モデルGloveと超語彙言語モデルGPT-2を訓練した。
そして、これらの情報制限されたモデルが、自然主義的テキストを聴く人間のfMRI信号の時間軸を予測することができるかを評価した。
分析の結果、言語に関わるほとんどの脳領域は、構文変数と意味変数の両方に敏感であるが、これらの影響の相対的な大きさは、これらの領域で大きく異なることがわかった。
論文 参考訳(メタデータ) (2023-02-28T08:16:18Z) - Variational Cross-Graph Reasoning and Adaptive Structured Semantics
Learning for Compositional Temporal Grounding [143.5927158318524]
テンポラルグラウンドティング(Temporal grounding)とは、クエリ文に従って、未編集のビデオから特定のセグメントを特定するタスクである。
新たに構成時間グラウンドタスクを導入し,2つの新しいデータセット分割を構築した。
ビデオや言語に内在する構造的意味論は、構成的一般化を実現する上で重要な要素である、と我々は主張する。
論文 参考訳(メタデータ) (2023-01-22T08:02:23Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
言語の神経基盤を分解する一般的なアプローチは、個人間で異なる刺激に対する脳の反応を関連付けている。
そこで本研究では,自然刺激に曝露された被験者に対して,モデルに基づくアプローチが等価な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-12T15:30:21Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。