論文の概要: Physical Activity Recognition Based on a Parallel Approach for an
Ensemble of Machine Learning and Deep Learning Classifiers
- arxiv url: http://arxiv.org/abs/2103.01859v1
- Date: Tue, 2 Mar 2021 16:50:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-03 16:13:07.639504
- Title: Physical Activity Recognition Based on a Parallel Approach for an
Ensemble of Machine Learning and Deep Learning Classifiers
- Title(参考訳): 機械学習とディープラーニング分類器のアンサンブルに対する並列的アプローチに基づく身体活動認識
- Authors: M. Abid, A. Khabou, Y. Ouakrim, H. Watel, S. Chemkhi, A. Mitiche,
A.Benazza-Benyahia, and N. Mezghani
- Abstract要約: モノのインターネット(IOT)に組み込まれたウェアラブルセンサーデバイスによる人間の活動認識(HAR)は、リモートヘルス監視と緊急通知に重要な役割を果たします。
本研究では、医療に適用可能な意思決定精度と実行速度の人間活動認識手法について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human activity recognition (HAR) by wearable sensor devices embedded in the
Internet of things (IOT) can play a significant role in remote health
monitoring and emergency notification, to provide healthcare of higher
standards. The purpose of this study is to investigate a human activity
recognition method of accrued decision accuracy and speed of execution to be
applicable in healthcare. This method classifies wearable sensor acceleration
time series data of human movement using efficient classifier combination of
feature engineering-based and feature learning-based data representation.
Leave-one-subject-out cross-validation of the method with data acquired from 44
subjects wearing a single waist-worn accelerometer on a smart textile, and
engaged in a variety of 10 activities, yields an average recognition rate of
90%, performing significantly better than individual classifiers. The method
easily accommodates functional and computational parallelization to bring
execution time significantly down.
- Abstract(参考訳): モノのインターネット(IOT)に組み込まれたウェアラブルセンサーデバイスによる人間の活動認識(HAR)は、リモートヘルス監視と緊急通知において重要な役割を果たし、より高い基準の医療を提供することができます。
本研究の目的は,医療に適用可能な意思決定の正確性と実行速度を推定するヒューマンアクティビティ認識手法を検討することである。
本手法は、特徴工学に基づく効率的な分類器と特徴学習に基づくデータ表現を組み合わせることで、ウェアラブルセンサの加速度時系列データを分類する。
スマートテキスタイルに単一ウエストウーン加速度計を装着した44名の被験者から取得したデータを用いて,10種類の活動を行い,平均認識率90%を達成し,個々の分類器よりも有意に良好な結果を得た。
この方法は、機能的および計算的並列化を容易に適応し、実行時間を著しく短縮する。
関連論文リスト
- Scaling Wearable Foundation Models [54.93979158708164]
センサ基礎モデルのスケーリング特性を計算,データ,モデルサイズにわたって検討する。
最大4000万時間分の心拍数、心拍変動、心電図活動、加速度計、皮膚温度、および1分間のデータを用いて、私たちはLSMを作成します。
この結果から,LSMのスケーリング法則は,時間とセンサの両面において,計算や外挿などのタスクに対して確立されている。
論文 参考訳(メタデータ) (2024-10-17T15:08:21Z) - A Real-time Human Pose Estimation Approach for Optimal Sensor Placement
in Sensor-based Human Activity Recognition [63.26015736148707]
本稿では,人間の行動認識に最適なセンサ配置の課題を解決するための新しい手法を提案する。
得られた骨格データは、最適なセンサ位置を特定するためのユニークな戦略を提供する。
本研究は,センサ配置の視覚的手法が従来のディープラーニング手法と同等の結果をもたらすことを示唆している。
論文 参考訳(メタデータ) (2023-07-06T10:38:14Z) - A Matter of Annotation: An Empirical Study on In Situ and Self-Recall Activity Annotations from Wearable Sensors [56.554277096170246]
In-the-wildデータ収集に焦点をあてたユーザスタディにおいて,一般的な4つのアノテーション手法の評価と対比を行う実験的検討を行った。
実際の記録プロセス中に参加者がアノテートするユーザ主導のin situアノテーションと、各日の終わりに参加者が振り返ってアノテートするリコールメソッドの両方に対して、参加者は自身のアクティビティクラスと対応するラベルを選択できる柔軟性を持っていた。
論文 参考訳(メタデータ) (2023-05-15T16:02:56Z) - Multi-Channel Time-Series Person and Soft-Biometric Identification [65.83256210066787]
本研究は, 深層建築を用いて異なる活動を行う人間の記録から, 個人とソフトバイオメトリックスを同定する。
マルチチャネル時系列ヒューマンアクティビティ認識(HAR)の4つのデータセットに対する手法の評価を行った。
ソフトバイオメトリクスに基づく属性表現は、有望な結果を示し、より大きなデータセットの必要性を強調している。
論文 参考訳(メタデータ) (2023-04-04T07:24:51Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
このコントリビューションは、トレーニングデータを統計的にキュレートし、人間の身体的特性がHARのパフォーマンスにどの程度影響するかを評価する。
時系列HARのセンサ,アクティビティ,記録の異なる2つのHARデータセット上で,最先端の畳み込みニューラルネットワークの性能を評価する。
論文 参考訳(メタデータ) (2023-01-19T12:33:50Z) - Human Activity Recognition on wrist-worn accelerometers using
self-supervised neural networks [0.0]
日常生活活動の指標 (ADL) は, 健康の指標として重要であるが, 生体内測定は困難である。
本稿では,加速度センサデータの頑健な表現をデバイスや対象に対して一般化するための自己教師付き学習パラダイムを提案する。
また,連続した実生活データに対して,有意な活動のセグメントを同定し,HARの精度を高めるセグメンテーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-22T23:35:20Z) - Incremental Learning Techniques for Online Human Activity Recognition [0.0]
身体運動のオンライン予測のためのヒューマンアクティビティ認識(HAR)手法を提案する。
我々は,監視ソフトウェアを含むHARシステムと加速度計とジャイロスコープデータを収集するモバイルアプリケーションを開発する。
この研究で6つの漸進的学習アルゴリズムが採用され、オフラインのHARシステムの開発によく使用されるバッチ学習アルゴリズムと比較される。
論文 参考訳(メタデータ) (2021-09-20T11:33:09Z) - Contrastive Predictive Coding for Human Activity Recognition [5.766384728949437]
本研究では,センサデータストリームの長期的時間構造をキャプチャする人間行動認識にContrastive Predictive Codingフレームワークを導入する。
CPCベースの事前学習は自己管理され、その結果得られた表現は標準のアクティビティチェーンに統合できる。
少量のラベル付きトレーニングデータしか利用できない場合、認識性能が大幅に向上します。
論文 参考訳(メタデータ) (2020-12-09T21:44:36Z) - Self-supervised transfer learning of physiological representations from
free-living wearable data [12.863826659440026]
意味ラベルのない活動・心拍(HR)信号を用いた新しい自己教師型表現学習法を提案する。
我々は、我々のモデルを、最大の自由生活複合センシングデータセット(手首加速度計とウェアラブル心電図データによる280k時間)で評価する。
論文 参考訳(メタデータ) (2020-11-18T23:21:34Z) - Learning Generalizable Physiological Representations from Large-scale
Wearable Data [12.863826659440026]
意味ラベルのない活動・心拍(HR)信号を用いた新しい自己教師型表現学習法を提案する。
その結果, 線形分類器を用いた伝達学習により, 様々な下流タスクにおいて, 埋め込みが一般化できることが示唆された。
本研究は,大規模健康・ライフスタイルモニタリングに寄与する行動・生理的データに対する,最初のマルチモーダル自己管理手法を提案する。
論文 参考訳(メタデータ) (2020-11-09T17:56:03Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。