Physical Activity Recognition Based on a Parallel Approach for an
Ensemble of Machine Learning and Deep Learning Classifiers
- URL: http://arxiv.org/abs/2103.01859v1
- Date: Tue, 2 Mar 2021 16:50:52 GMT
- Title: Physical Activity Recognition Based on a Parallel Approach for an
Ensemble of Machine Learning and Deep Learning Classifiers
- Authors: M. Abid, A. Khabou, Y. Ouakrim, H. Watel, S. Chemkhi, A. Mitiche,
A.Benazza-Benyahia, and N. Mezghani
- Abstract summary: Human activity recognition (HAR) by wearable sensor devices embedded in the Internet of things (IOT) can play a significant role in remote health monitoring and emergency notification.
This study investigates a human activity recognition method of accrued decision accuracy and speed of execution to be applicable in healthcare.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human activity recognition (HAR) by wearable sensor devices embedded in the
Internet of things (IOT) can play a significant role in remote health
monitoring and emergency notification, to provide healthcare of higher
standards. The purpose of this study is to investigate a human activity
recognition method of accrued decision accuracy and speed of execution to be
applicable in healthcare. This method classifies wearable sensor acceleration
time series data of human movement using efficient classifier combination of
feature engineering-based and feature learning-based data representation.
Leave-one-subject-out cross-validation of the method with data acquired from 44
subjects wearing a single waist-worn accelerometer on a smart textile, and
engaged in a variety of 10 activities, yields an average recognition rate of
90%, performing significantly better than individual classifiers. The method
easily accommodates functional and computational parallelization to bring
execution time significantly down.
Related papers
- Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - A Real-time Human Pose Estimation Approach for Optimal Sensor Placement
in Sensor-based Human Activity Recognition [63.26015736148707]
This paper introduces a novel methodology to resolve the issue of optimal sensor placement for Human Activity Recognition.
The derived skeleton data provides a unique strategy for identifying the optimal sensor location.
Our findings indicate that the vision-based method for sensor placement offers comparable results to the conventional deep learning approach.
arXiv Detail & Related papers (2023-07-06T10:38:14Z) - A Matter of Annotation: An Empirical Study on In Situ and Self-Recall Activity Annotations from Wearable Sensors [56.554277096170246]
We present an empirical study that evaluates and contrasts four commonly employed annotation methods in user studies focused on in-the-wild data collection.
For both the user-driven, in situ annotations, where participants annotate their activities during the actual recording process, and the recall methods, where participants retrospectively annotate their data at the end of each day, the participants had the flexibility to select their own set of activity classes and corresponding labels.
arXiv Detail & Related papers (2023-05-15T16:02:56Z) - Multi-Channel Time-Series Person and Soft-Biometric Identification [65.83256210066787]
This work investigates person and soft-biometrics identification from recordings of humans performing different activities using deep architectures.
We evaluate the method on four datasets of multi-channel time-series human activity recognition (HAR)
Soft-biometric based attribute representation shows promising results and emphasis the necessity of larger datasets.
arXiv Detail & Related papers (2023-04-04T07:24:51Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
This contribution statistically curates the training data to assess to what degree the physical characteristics of humans influence HAR performance.
We evaluate the performance of a state-of-the-art convolutional neural network on two HAR datasets that vary in the sensors, activities, and recording for time-series HAR.
arXiv Detail & Related papers (2023-01-19T12:33:50Z) - Human Activity Recognition on wrist-worn accelerometers using
self-supervised neural networks [0.0]
Measures of Activity of Daily Living (ADL) are an important indicator of overall health but difficult to measure in-clinic.
We propose a self-supervised learning paradigm to create a robust representation of accelerometer data that can generalize across devices and subjects.
We also propose a segmentation algorithm which can identify segments of salient activity and boost HAR accuracy on continuous real-life data.
arXiv Detail & Related papers (2021-12-22T23:35:20Z) - Incremental Learning Techniques for Online Human Activity Recognition [0.0]
We propose a human activity recognition (HAR) approach for the online prediction of physical movements.
We develop a HAR system containing monitoring software and a mobile application that collects accelerometer and gyroscope data.
Six incremental learning algorithms are employed and evaluated in this work and compared with several batch learning algorithms commonly used for developing offline HAR systems.
arXiv Detail & Related papers (2021-09-20T11:33:09Z) - Contrastive Predictive Coding for Human Activity Recognition [5.766384728949437]
We introduce the Contrastive Predictive Coding framework to human activity recognition, which captures the long-term temporal structure of sensor data streams.
CPC-based pre-training is self-supervised, and the resulting learned representations can be integrated into standard activity chains.
It leads to significantly improved recognition performance when only small amounts of labeled training data are available.
arXiv Detail & Related papers (2020-12-09T21:44:36Z) - Self-supervised transfer learning of physiological representations from
free-living wearable data [12.863826659440026]
We present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels.
We evaluate our model in the largest free-living combined-sensing dataset (comprising >280k hours of wrist accelerometer & wearable ECG data)
arXiv Detail & Related papers (2020-11-18T23:21:34Z) - Learning Generalizable Physiological Representations from Large-scale
Wearable Data [12.863826659440026]
We present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels.
We show that the resulting embeddings can generalize in various downstream tasks through transfer learning with linear classifiers.
Overall, we propose the first multimodal self-supervised method for behavioral and physiological data with implications for large-scale health and lifestyle monitoring.
arXiv Detail & Related papers (2020-11-09T17:56:03Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.