Human Activity Recognition on wrist-worn accelerometers using
self-supervised neural networks
- URL: http://arxiv.org/abs/2112.12272v1
- Date: Wed, 22 Dec 2021 23:35:20 GMT
- Title: Human Activity Recognition on wrist-worn accelerometers using
self-supervised neural networks
- Authors: Niranjan Sridhar, Lance Myers
- Abstract summary: Measures of Activity of Daily Living (ADL) are an important indicator of overall health but difficult to measure in-clinic.
We propose a self-supervised learning paradigm to create a robust representation of accelerometer data that can generalize across devices and subjects.
We also propose a segmentation algorithm which can identify segments of salient activity and boost HAR accuracy on continuous real-life data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Measures of Activity of Daily Living (ADL) are an important indicator of
overall health but difficult to measure in-clinic. Automated and accurate human
activity recognition (HAR) using wrist-worn accelerometers enables practical
and cost efficient remote monitoring of ADL. Key obstacles in developing high
quality HAR is the lack of large labeled datasets and the performance loss when
applying models trained on small curated datasets to the continuous stream of
heterogeneous data in real-life. In this work we design a self-supervised
learning paradigm to create a robust representation of accelerometer data that
can generalize across devices and subjects. We demonstrate that this
representation can separate activities of daily living and achieve strong HAR
accuracy (on multiple benchmark datasets) using very few labels. We also
propose a segmentation algorithm which can identify segments of salient
activity and boost HAR accuracy on continuous real-life data.
Related papers
- Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Human Activity Recognition Using Self-Supervised Representations of
Wearable Data [0.0]
Development of accurate algorithms for human activity recognition (HAR) is hindered by the lack of large real-world labeled datasets.
Here we develop a 6-class HAR model with strong performance when evaluated on real-world datasets not seen during training.
arXiv Detail & Related papers (2023-04-26T07:33:54Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
This contribution statistically curates the training data to assess to what degree the physical characteristics of humans influence HAR performance.
We evaluate the performance of a state-of-the-art convolutional neural network on two HAR datasets that vary in the sensors, activities, and recording for time-series HAR.
arXiv Detail & Related papers (2023-01-19T12:33:50Z) - HAR-GCNN: Deep Graph CNNs for Human Activity Recognition From Highly
Unlabeled Mobile Sensor Data [61.79595926825511]
Acquiring balanced datasets containing accurate activity labels requires humans to correctly annotate and potentially interfere with the subjects' normal activities in real-time.
We propose HAR-GCCN, a deep graph CNN model that leverages the correlation between chronologically adjacent sensor measurements to predict the correct labels for unclassified activities.
Har-GCCN shows superior performance relative to previously used baseline methods, improving classification accuracy by about 25% and up to 68% on different datasets.
arXiv Detail & Related papers (2022-03-07T01:23:46Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
We introduce a novel method, based on a long short-term memory (LSTM) network, to continuously map forearm EMG activity onto hand kinematics.
Ours is the first reported work on the prediction of hand kinematics that uses this challenging dataset.
Our results suggest that the presented method is suitable for the generation of control signals for the independent and proportional actuation of the multiple DOFs of state-of-the-art hand prostheses.
arXiv Detail & Related papers (2021-04-29T00:11:32Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
We propose a new data selection method that exploits a diverse set of criteria that quantize interestingness of traffic scenes.
Our experiments show that the proposed curation pipeline is able to select datasets that lead to better generalization and higher performance.
arXiv Detail & Related papers (2021-01-16T23:45:02Z) - Contrastive Predictive Coding for Human Activity Recognition [5.766384728949437]
We introduce the Contrastive Predictive Coding framework to human activity recognition, which captures the long-term temporal structure of sensor data streams.
CPC-based pre-training is self-supervised, and the resulting learned representations can be integrated into standard activity chains.
It leads to significantly improved recognition performance when only small amounts of labeled training data are available.
arXiv Detail & Related papers (2020-12-09T21:44:36Z) - Self-supervised transfer learning of physiological representations from
free-living wearable data [12.863826659440026]
We present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels.
We evaluate our model in the largest free-living combined-sensing dataset (comprising >280k hours of wrist accelerometer & wearable ECG data)
arXiv Detail & Related papers (2020-11-18T23:21:34Z) - Learning Generalizable Physiological Representations from Large-scale
Wearable Data [12.863826659440026]
We present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels.
We show that the resulting embeddings can generalize in various downstream tasks through transfer learning with linear classifiers.
Overall, we propose the first multimodal self-supervised method for behavioral and physiological data with implications for large-scale health and lifestyle monitoring.
arXiv Detail & Related papers (2020-11-09T17:56:03Z) - Sequential Weakly Labeled Multi-Activity Localization and Recognition on
Wearable Sensors using Recurrent Attention Networks [13.64024154785943]
We propose a recurrent attention network (RAN) to handle sequential weakly labeled multi-activity recognition and location tasks.
Our RAN model can simultaneously infer multi-activity types from the coarse-grained sequential weak labels.
It will greatly reduce the burden of manual labeling.
arXiv Detail & Related papers (2020-04-13T04:57:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.