論文の概要: Data Augmentation for Abstractive Query-Focused Multi-Document
Summarization
- arxiv url: http://arxiv.org/abs/2103.01863v1
- Date: Tue, 2 Mar 2021 16:57:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-03 17:28:34.968843
- Title: Data Augmentation for Abstractive Query-Focused Multi-Document
Summarization
- Title(参考訳): Abstractive Query-Focused Multi-Document Summarizationのためのデータ拡張
- Authors: Ramakanth Pasunuru, Asli Celikyilmaz, Michel Galley, Chenyan Xiong,
Yizhe Zhang, Mohit Bansal, Jianfeng Gao
- Abstract要約: 2つのQMDSトレーニングデータセットを提示し,2つのデータ拡張手法を用いて構築する。
これらの2つのデータセットは相補的な性質を持ち、すなわちQMDSCNNは実際のサマリを持つが、クエリはシミュレートされる。
組み合わせたデータセット上にエンドツーエンドのニューラルネットワークモデルを構築し、DUCデータセットに最新の転送結果をもたらします。
- 参考スコア(独自算出の注目度): 129.96147867496205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The progress in Query-focused Multi-Document Summarization (QMDS) has been
limited by the lack of sufficient largescale high-quality training datasets. We
present two QMDS training datasets, which we construct using two data
augmentation methods: (1) transferring the commonly used single-document
CNN/Daily Mail summarization dataset to create the QMDSCNN dataset, and (2)
mining search-query logs to create the QMDSIR dataset. These two datasets have
complementary properties, i.e., QMDSCNN has real summaries but queries are
simulated, while QMDSIR has real queries but simulated summaries. To cover both
these real summary and query aspects, we build abstractive end-to-end neural
network models on the combined datasets that yield new state-of-the-art
transfer results on DUC datasets. We also introduce new hierarchical encoders
that enable a more efficient encoding of the query together with multiple
documents. Empirical results demonstrate that our data augmentation and
encoding methods outperform baseline models on automatic metrics, as well as on
human evaluations along multiple attributes.
- Abstract(参考訳): クエリ指向のマルチドキュメント要約(QMDS)の進歩は、十分な大規模な高品質のトレーニングデータセットが不足しているため、制限されている。
本稿では,QMDSCNNデータセットを作成するために,(1)一般的な単一文書CNN/デイリーメール要約データセットを転送し,(2)QMDSIRデータセットを作成するために検索クエリログをマイニングする2つのQMDSトレーニングデータセットについて述べる。
これらの2つのデータセットは相補的な性質を持ち、すなわちQMDSCNNは実際のサマリを持つが、クエリはシミュレートされる。
これらの実際の要約とクエリの両方をカバーするために、ducデータセットに新しい最先端の転送結果をもたらす複合データセット上に、抽象的なエンドツーエンドニューラルネットワークモデルを構築します。
また,複数の文書とともにクエリをより効率的なエンコーディングを可能にする新しい階層エンコーダも導入する。
実験の結果,データ拡張およびエンコーディング手法は,複数の属性による評価と同様に,自動メトリクスのベースラインモデルよりも優れていることがわかった。
関連論文リスト
- CRAFT Your Dataset: Task-Specific Synthetic Dataset Generation Through Corpus Retrieval and Augmentation [51.2289822267563]
合成データセットを生成するCRAFT(Corpus Retrieval and Augmentation for Fine-Tuning)を提案する。
我々は、大規模な公開ウェブクローラコーパスと類似性に基づく文書検索を用いて、他の関連する人文文書を検索する。
我々は,CRAFTが4つのタスクに対して,大規模タスク固有のトレーニングデータセットを効率的に生成できることを実証した。
論文 参考訳(メタデータ) (2024-09-03T17:54:40Z) - Advancing Multimodal Large Language Models in Chart Question Answering with Visualization-Referenced Instruction Tuning [1.6570772838074355]
マルチモーダル大言語モデル(MLLM)は、チャート質問応答(CQA)に大きな可能性を示す
近年の取り組みは、データ収集と合成によるデータセットのスケールアップに重点を置いている。
本稿では,トレーニングデータセットの強化とモデル開発を指導するための,可視化参照型指導チューニング手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T17:04:34Z) - Zero-shot Composed Text-Image Retrieval [72.43790281036584]
合成画像検索(CIR)の問題点を考察する。
テキストや画像などのマルチモーダル情報を融合し、クエリにマッチする画像を正確に検索し、ユーザの表現能力を拡張できるモデルをトレーニングすることを目的としている。
論文 参考訳(メタデータ) (2023-06-12T17:56:01Z) - LMGQS: A Large-scale Dataset for Query-focused Summarization [77.6179359525065]
我々は4つの一般的な要約ベンチマークを新しいQFSベンチマークデータセットであるLMGQSに変換する。
我々は最先端の要約モデルを用いてベースラインを確立する。
複数の既存のQFSベンチマークにおいて、最先端のゼロショットと教師付きパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-05-22T14:53:45Z) - Align and Attend: Multimodal Summarization with Dual Contrastive Losses [57.83012574678091]
マルチモーダル要約の目標は、異なるモーダルから最も重要な情報を抽出し、出力要約を形成することである。
既存の手法では、異なるモダリティ間の時間的対応の活用に失敗し、異なるサンプル間の本質的な相関を無視する。
A2Summ(Align and Attend Multimodal Summarization)は、マルチモーダル入力を効果的に整列し、参加できる統一型マルチモーダルトランスフォーマーモデルである。
論文 参考訳(メタデータ) (2023-03-13T17:01:42Z) - HowSumm: A Multi-Document Summarization Dataset Derived from WikiHow
Articles [8.53502615629675]
クエリ中心のマルチドキュメント要約(qMDS)タスクのための,新たな大規模データセットであるHowSummを提案する。
このユースケースは、既存のマルチドキュメント要約(MDS)データセットでカバーされているユースケースと異なり、教育や産業のシナリオに適用できる。
データセットの作成について述べ、他の要約コーパスと区別するユニークな特徴について論じる。
論文 参考訳(メタデータ) (2021-10-07T04:44:32Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
人物再識別(re-ID)は、ビデオ監視に広く応用されているため、ますます注目を集めている。
残念なことに、主流のディープラーニング手法では、モデルをトレーニングするために大量のラベル付きデータが必要です。
本稿では,コンピュータゲーム内で合成されたre-IDサンプルを自動的に生成するデータコレクタを開発し,同時にアノテートするデータラベラを構築した。
論文 参考訳(メタデータ) (2021-09-12T15:51:41Z) - WSL-DS: Weakly Supervised Learning with Distant Supervision for Query
Focused Multi-Document Abstractive Summarization [16.048329028104643]
Query Focused Multi-Document Summarization (QF-MDS)タスクでは、ドキュメントのセットとクエリが与えられ、そこでこれらのドキュメントから要約を生成する。
このタスクの大きな課題のひとつは、ラベル付きトレーニングデータセットの可用性の欠如である。
本稿では,遠隔指導による弱教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2020-11-03T02:02:55Z) - AQuaMuSe: Automatically Generating Datasets for Query-Based
Multi-Document Summarization [17.098075160558576]
本稿では,質問応答データセットと大規模文書コーパスからqMDS例を自動的に抽出する,AQuaMuSeと呼ばれるスケーラブルな手法を提案する。
5,519のクエリベースの要約を持つAQuaMuSeデータセットの特定のインスタンスを公開し、それぞれがCommon Crawlから355万のドキュメントのインデックスから選択された平均6つの入力ドキュメントを関連づける。
論文 参考訳(メタデータ) (2020-10-23T22:38:18Z) - SYNC: A Copula based Framework for Generating Synthetic Data from
Aggregated Sources [8.350531869939351]
ダウンスケーリングと呼ばれる合成データ生成タスクについて検討する。
我々はSynC (Synthetic Data Generation via Gaussian Copula) と呼ばれる多段階フレームワークを提案する。
私たちはこの仕事に4つの重要な貢献をしています。
論文 参考訳(メタデータ) (2020-09-20T16:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。