論文の概要: AQuaMuSe: Automatically Generating Datasets for Query-Based
Multi-Document Summarization
- arxiv url: http://arxiv.org/abs/2010.12694v1
- Date: Fri, 23 Oct 2020 22:38:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 23:02:31.155862
- Title: AQuaMuSe: Automatically Generating Datasets for Query-Based
Multi-Document Summarization
- Title(参考訳): AQuaMuSe:クエリベースのマルチドキュメント要約のためのデータセットの自動生成
- Authors: Sayali Kulkarni, Sheide Chammas, Wan Zhu, Fei Sha, Eugene Ie
- Abstract要約: 本稿では,質問応答データセットと大規模文書コーパスからqMDS例を自動的に抽出する,AQuaMuSeと呼ばれるスケーラブルな手法を提案する。
5,519のクエリベースの要約を持つAQuaMuSeデータセットの特定のインスタンスを公開し、それぞれがCommon Crawlから355万のドキュメントのインデックスから選択された平均6つの入力ドキュメントを関連づける。
- 参考スコア(独自算出の注目度): 17.098075160558576
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Summarization is the task of compressing source document(s) into coherent and
succinct passages. This is a valuable tool to present users with concise and
accurate sketch of the top ranked documents related to their queries.
Query-based multi-document summarization (qMDS) addresses this pervasive need,
but the research is severely limited due to lack of training and evaluation
datasets as existing single-document and multi-document summarization datasets
are inadequate in form and scale. We propose a scalable approach called
AQuaMuSe to automatically mine qMDS examples from question answering datasets
and large document corpora. Our approach is unique in the sense that it can
general a dual dataset -- for extractive and abstractive summaries both. We
publicly release a specific instance of an AQuaMuSe dataset with 5,519
query-based summaries, each associated with an average of 6 input documents
selected from an index of 355M documents from Common Crawl. Extensive
evaluation of the dataset along with baseline summarization model experiments
are provided.
- Abstract(参考訳): 要約は、ソースドキュメントをコヒーレントかつ簡潔な文に圧縮するタスクである。
これは、クエリに関連する上位のドキュメントの簡潔で正確なスケッチをユーザに提示する貴重なツールである。
クエリベースのマルチドキュメント要約(qmds)はこの広範なニーズに対応するが、既存のシングルドキュメントとマルチドキュメント要約データセットが形式とスケールで不十分であるため、トレーニングと評価データセットの欠如により、研究は大幅に制限されている。
本稿では,質問応答データセットと大規模文書コーパスからqMDS例を自動的に抽出する,AQuaMuSeと呼ばれるスケーラブルな手法を提案する。
私たちのアプローチは、抽出的および抽象的な要約の両方に対して、二重データセットを一般化できるという意味でユニークなものです。
5,519のクエリベースの要約を持つAQuaMuSeデータセットの特定のインスタンスを公開し、それぞれがCommon Crawlから355万のドキュメントのインデックスから選択された平均6つの入力ドキュメントを関連づける。
ベースライン要約モデル実験とともにデータセットの広範囲な評価を行う。
関連論文リスト
- The Power of Summary-Source Alignments [62.76959473193149]
多文書要約(MDS)は難しい課題であり、しばしばサリエンスと冗長性検出のサブタスクに分解される。
参照要約とそのソース文書間の対応する文のアライメントを利用して、トレーニングデータを生成する。
本稿では,よりきめ細かな提案スパンレベルで適用することで,要約ソースアライメントフレームワークを拡張することを提案する。
論文 参考訳(メタデータ) (2024-06-02T19:35:19Z) - QFMTS: Generating Query-Focused Summaries over Multi-Table Inputs [63.98556480088152]
表要約は、情報を簡潔で分かりやすいテキスト要約に凝縮するための重要な課題である。
本稿では,クエリ中心のマルチテーブル要約を導入することで,これらの制約に対処する新しい手法を提案する。
提案手法は,テーブルシリアライズモジュール,要約コントローラ,および大規模言語モデルからなり,ユーザの情報要求に合わせたクエリ依存のテーブル要約を生成する。
論文 参考訳(メタデータ) (2024-05-08T15:05:55Z) - Non-Parametric Memory Guidance for Multi-Document Summarization [0.0]
本稿では,非パラメトリックメモリと組み合わせたレトリバー誘導モデルを提案する。
このモデルはデータベースから関連する候補を検索し、その候補をコピー機構とソースドキュメントで考慮して要約を生成する。
本手法は,学術論文を含むMultiXScienceデータセットを用いて評価する。
論文 参考訳(メタデータ) (2023-11-14T07:41:48Z) - LMGQS: A Large-scale Dataset for Query-focused Summarization [77.6179359525065]
我々は4つの一般的な要約ベンチマークを新しいQFSベンチマークデータセットであるLMGQSに変換する。
我々は最先端の要約モデルを用いてベースラインを確立する。
複数の既存のQFSベンチマークにおいて、最先端のゼロショットと教師付きパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-05-22T14:53:45Z) - How "Multi" is Multi-Document Summarization? [15.574673241564932]
MDSデータセットの参照要約とシステム要約の両方が、実際に分散情報に基づいていることが期待されている。
「要約が分散する度合いを評価するための自動測度を提案する。」
以上の結果から,MSSデータセットは複数の文書からの情報の組み合わせをほとんど必要とせず,単一の文書が要約内容全体をカバーしていることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T10:20:09Z) - HowSumm: A Multi-Document Summarization Dataset Derived from WikiHow
Articles [8.53502615629675]
クエリ中心のマルチドキュメント要約(qMDS)タスクのための,新たな大規模データセットであるHowSummを提案する。
このユースケースは、既存のマルチドキュメント要約(MDS)データセットでカバーされているユースケースと異なり、教育や産業のシナリオに適用できる。
データセットの作成について述べ、他の要約コーパスと区別するユニークな特徴について論じる。
論文 参考訳(メタデータ) (2021-10-07T04:44:32Z) - Text Summarization with Latent Queries [60.468323530248945]
本稿では,LaQSumについて紹介する。LaQSumは,既存の問合せ形式と抽象的な要約のための文書から遅延クエリを学習する,最初の統一テキスト要約システムである。
本システムでは, 潜伏クエリモデルと条件付き言語モデルとを協調的に最適化し, ユーザがテスト時に任意のタイプのクエリをプラグイン・アンド・プレイできるようにする。
本システムでは,クエリタイプ,文書設定,ターゲットドメインの異なる要約ベンチマークにおいて,強力な比較システムの性能を強く向上させる。
論文 参考訳(メタデータ) (2021-05-31T21:14:58Z) - Data Augmentation for Abstractive Query-Focused Multi-Document
Summarization [129.96147867496205]
2つのQMDSトレーニングデータセットを提示し,2つのデータ拡張手法を用いて構築する。
これらの2つのデータセットは相補的な性質を持ち、すなわちQMDSCNNは実際のサマリを持つが、クエリはシミュレートされる。
組み合わせたデータセット上にエンドツーエンドのニューラルネットワークモデルを構築し、DUCデータセットに最新の転送結果をもたらします。
論文 参考訳(メタデータ) (2021-03-02T16:57:01Z) - WSL-DS: Weakly Supervised Learning with Distant Supervision for Query
Focused Multi-Document Abstractive Summarization [16.048329028104643]
Query Focused Multi-Document Summarization (QF-MDS)タスクでは、ドキュメントのセットとクエリが与えられ、そこでこれらのドキュメントから要約を生成する。
このタスクの大きな課題のひとつは、ラベル付きトレーニングデータセットの可用性の欠如である。
本稿では,遠隔指導による弱教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2020-11-03T02:02:55Z) - QBSUM: a Large-Scale Query-Based Document Summarization Dataset from
Real-world Applications [20.507631900617817]
提案するQBSUMは,中国語クエリベースの文書要約処理のための49,000以上のデータサンプルからなる高品質な大規模データセットである。
また,タスクに対する教師なしおよび教師なしの複数のソリューションを提案し,オフライン実験とオンラインA/Bテストの両方を通して,高速な推論と優れた性能を示す。
論文 参考訳(メタデータ) (2020-10-27T07:30:04Z) - SciREX: A Challenge Dataset for Document-Level Information Extraction [56.83748634747753]
ドキュメントレベルで大規模な情報抽出データセットを作成するのは難しい。
複数のIEタスクを含む文書レベルのIEデータセットであるSciREXを紹介する。
我々は、従来の最先端のIEモデルをドキュメントレベルのIEに拡張する強力なベースラインとして、ニューラルモデルを開発する。
論文 参考訳(メタデータ) (2020-05-01T17:30:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。