論文の概要: Minimax Estimation for Personalized Federated Learning: An Alternative between FedAvg and Local Training?
- arxiv url: http://arxiv.org/abs/2103.01901v2
- Date: Tue, 11 Mar 2025 02:36:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:40:44.372649
- Title: Minimax Estimation for Personalized Federated Learning: An Alternative between FedAvg and Local Training?
- Title(参考訳): 個人化フェデレーション学習のためのミニマックス推定:FedAvgとローカルトレーニングの代替策?
- Authors: Shuxiao Chen, Qinqing Zheng, Qi Long, Weijie J. Su,
- Abstract要約: 局所的なデータセットは、しばしば異なるが全く関係のない確率分布に由来する。
本稿では,パーソナライズド・フェデレーション・ラーニングの過大なリスクが,ミニマックスの観点からのデータ不均一性にどのように依存しているかを示す。
- 参考スコア(独自算出の注目度): 31.831856922814502
- License:
- Abstract: A widely recognized difficulty in federated learning arises from the statistical heterogeneity among clients: local datasets often originate from distinct yet not entirely unrelated probability distributions, and personalization is, therefore, necessary to achieve optimal results from each individual's perspective. In this paper, we show how the excess risks of personalized federated learning using a smooth, strongly convex loss depend on data heterogeneity from a minimax point of view, with a focus on the FedAvg algorithm (McMahan et al., 2017) and pure local training (i.e., clients solve empirical risk minimization problems on their local datasets without any communication). Our main result reveals an approximate alternative between these two baseline algorithms for federated learning: the former algorithm is minimax rate optimal over a collection of instances when data heterogeneity is small, whereas the latter is minimax rate optimal when data heterogeneity is large, and the threshold is sharp up to a constant. As an implication, our results show that from a worst-case point of view, a dichotomous strategy that makes a choice between the two baseline algorithms is rate-optimal. Another implication is that the popular FedAvg following by local fine tuning strategy is also minimax optimal under additional regularity conditions. Our analysis relies on a new notion of algorithmic stability that takes into account the nature of federated learning.
- Abstract(参考訳): 局所的なデータセットは、全く関係のない確率分布から生じることが多く、パーソナライゼーションは各個人の観点から最適な結果を得るために必要である。
本稿では,FedAvgアルゴリズム(McMahan et al, 2017)と純粋局所訓練(クライアントは,通信のないローカルデータセット上で,経験的リスク最小化問題を解く)に焦点を当て,スムーズで強い凸損失による個人別フェデレーション学習の過剰リスクが,データ不均一性にどのように依存しているかを示す。
このアルゴリズムは,データ不均一性が小さい場合のインスタンスの集合に対して最小値が最適であるのに対して,データ不均一性が大きい場合の最小値が最適であり,しきい値が一定となる場合の最小値が最適である。
以上の結果から,2つの基本アルゴリズムを選択できる二分法が最適であることが示唆された。
別の意味は、局所的な微調整戦略によって従う一般的なFedAvgは、追加の正則性条件の下でも極小最適であるということである。
我々の分析は、フェデレートラーニングの性質を考慮に入れたアルゴリズムの安定性という新しい概念に依存している。
関連論文リスト
- Learning with Shared Representations: Statistical Rates and Efficient Algorithms [13.643155483461028]
潜在共有表現による協調学習により、異種クライアントは、サンプルサイズを減らしながら、パフォーマンスを向上したパーソナライズされたモデルをトレーニングできる。
経験的成功と広範な研究にもかかわらず、統計誤差率の理論的理解は、低次元線型部分空間に制約された共有表現でさえも不完全である。
論文 参考訳(メタデータ) (2024-09-07T21:53:01Z) - Federated Minimax Optimization with Client Heterogeneity [11.558008138030845]
ミニマックス計算は、GANのような先進的な近代的応用に注目が集まっている。
そこで我々は,ローカルSGDAのような設定や既存手法を前提とした汎用のミニマックスフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-08T18:33:55Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
ヘテロジニアスデータによる不均一な統計的課題を解決するために, 分散されたニュートン型ニュートン型トレーニングスキームであるFedOVAを提案する。
FedOVAはマルチクラス分類問題をより単純なバイナリ分類問題に分解し、アンサンブル学習を用いてそれぞれの出力を結合する。
論文 参考訳(メタデータ) (2021-10-14T17:35:24Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、機械学習のワークホースであるが、適応的に収集されたデータを使用すると、そのモデルに依存しない保証が失敗する可能性がある。
本研究では,仮説クラス上での損失関数の平均値を最小限に抑えるため,適応的に収集したデータを用いた一般的な重み付きERMアルゴリズムについて検討する。
政策学習では、探索がゼロになるたびに既存の文献のオープンギャップを埋める率-最適後悔保証を提供する。
論文 参考訳(メタデータ) (2021-06-03T09:50:13Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - The Simulator: Understanding Adaptive Sampling in the
Moderate-Confidence Regime [52.38455827779212]
エミュレータと呼ばれる適応サンプリングを解析するための新しい手法を提案する。
適切なログファクタを組み込んだトップk問題の最初のインスタンスベースの下位境界を証明します。
我々の新しい分析は、後者の問題に対するこの種の最初のエミュレータであるベストアームとトップkの識別に、シンプルでほぼ最適であることを示した。
論文 参考訳(メタデータ) (2017-02-16T23:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。