論文の概要: Federated PCA and Estimation for Spiked Covariance Matrices: Optimal Rates and Efficient Algorithm
- arxiv url: http://arxiv.org/abs/2411.15660v1
- Date: Sat, 23 Nov 2024 21:57:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:18:53.383991
- Title: Federated PCA and Estimation for Spiked Covariance Matrices: Optimal Rates and Efficient Algorithm
- Title(参考訳): スパイク共分散行列のフェデレーションPCAと推定:最適速度と効率的なアルゴリズム
- Authors: Jingyang Li, T. Tony Cai, Dong Xia, Anru R. Zhang,
- Abstract要約: フェデレートラーニング(FL)は、プライバシとデータセキュリティの強化により、機械学習において、近年大きな注目を集めている。
本稿では,分散差分プライバシー制約下でのフェデレーションPCAとスパイク共分散行列の推定について検討する。
我々は、集中サーバの最適レートがローカルクライアントのミニマックスレートの調和平均であることから、収束のミニマックスレートを確立する。
- 参考スコア(独自算出の注目度): 19.673557166734977
- License:
- Abstract: Federated Learning (FL) has gained significant recent attention in machine learning for its enhanced privacy and data security, making it indispensable in fields such as healthcare, finance, and personalized services. This paper investigates federated PCA and estimation for spiked covariance matrices under distributed differential privacy constraints. We establish minimax rates of convergence, with a key finding that the central server's optimal rate is the harmonic mean of the local clients' minimax rates. This guarantees consistent estimation at the central server as long as at least one local client provides consistent results. Notably, consistency is maintained even if some local estimators are inconsistent, provided there are enough clients. These findings highlight the robustness and scalability of FL for reliable statistical inference under privacy constraints. To establish minimax lower bounds, we derive a matrix version of van Trees' inequality, which is of independent interest. Furthermore, we propose an efficient algorithm that preserves differential privacy while achieving near-optimal rates at the central server, up to a logarithmic factor. We address significant technical challenges in analyzing this algorithm, which involves a three-layer spectral decomposition. Numerical performance of the proposed algorithm is investigated using both simulated and real data.
- Abstract(参考訳): フェデレートラーニング(FL)は、プライバシとデータセキュリティの強化により、マシンラーニングにおいて重要な注目を集めており、医療、金融、パーソナライズドサービスといった分野において不可欠である。
本稿では,分散差分プライバシー制約下でのフェデレーションPCAとスパイク共分散行列の推定について検討する。
我々は、集中サーバの最適レートがローカルクライアントのミニマックスレートの調和平均であることから、収束のミニマックスレートを確立する。
これは、少なくとも1つのローカルクライアントが一貫した結果を提供する限り、中央サーバで一貫した見積もりを保証する。
特に、クライアントが十分ある場合、いくつかのローカルな推定器が矛盾している場合でも、一貫性は維持される。
これらの知見は、プライバシー制約下での信頼性統計的推測のためのFLの堅牢性とスケーラビリティを浮き彫りにしている。
ミニマックスローバウンドを確立するために、ファン・ツリーの不等式の行列版を導出する。
さらに,差分プライバシを効率よく保ちながら,対数係数まで中央サーバでほぼ最適な速度を達成できるアルゴリズムを提案する。
我々は3層分光分解を伴うこのアルゴリズムを解析する上で重要な技術的課題に対処する。
シミュレーションデータと実データの両方を用いて,提案アルゴリズムの数値計算性能について検討した。
関連論文リスト
- Private and Federated Stochastic Convex Optimization: Efficient Strategies for Centralized Systems [8.419845742978985]
本稿では,集中型システムにおけるフェデレートラーニング(FL)におけるプライバシ保護の課題に対処する。
我々は、同種および異種データ分布に対する最適収束率を維持しつつ、微分プライバシ(DP)を確保する手法を考案した。
論文 参考訳(メタデータ) (2024-07-17T08:19:58Z) - Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays [0.0]
フェデレートラーニング(FL)は、データを複数の場所に保持するモデル("clients")をセキュアにトレーニングするために提案されている。
FLアルゴリズムの性能を阻害する2つの大きな課題は、階層化クライアントによって引き起こされる長いトレーニング時間と、非イドローカルなデータ分布("client drift")によるモデル精度の低下である。
本稿では,Asynchronous Exact Averaging (AREA, Asynchronous Exact Averaging) を提案する。Asynchronous Exact Averaging (AREA) は,通信を利用して収束を高速化し,拡張性を向上し,クライアント更新頻度の変動によるクライアントのドリフトの補正にクライアントメモリを利用する。
論文 参考訳(メタデータ) (2024-05-16T14:22:49Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
本稿では, 3次圧縮機と多数決機構を組み合わせて, 差分プライバシー, 勾配圧縮, ビザンチンレジリエンスを同時に実現するternaryVoteを提案する。
提案アルゴリズムのF差分プライバシー(DP)とビザンチンレジリエンスのレンズによるプライバシー保証を理論的に定量化する。
論文 参考訳(メタデータ) (2024-02-16T16:41:14Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - On the Privacy-Robustness-Utility Trilemma in Distributed Learning [7.778461949427662]
本稿では,少数の対向マシンに対してロバスト性を保証するアルゴリズムによって得られた誤差を,まず厳密に解析する。
私たちの分析は、プライバシ、堅牢性、ユーティリティの基本的なトレードオフを示しています。
論文 参考訳(メタデータ) (2023-02-09T17:24:18Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
我々はFedSkipと呼ばれるデータ駆動型アプローチを導入し、フェデレーション平均化を定期的にスキップし、ローカルモデルをクロスデバイスに分散することで、クライアントの最適化を改善する。
我々は、FedSkipがはるかに高い精度、より良いアグリゲーション効率、競合する通信効率を達成することを示すために、さまざまなデータセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2022-12-14T13:57:01Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
フェデレートラーニング(FL)は、プライバシを保存する分散機械学習フレームワークとして多くの注目を集めている。
本稿では、トラグラー問題を緩和するために、SCFL(Coded Federated Learning)というコード付きフェデレーション学習フレームワークを提案する。
我々は、相互情報差分プライバシー(MI-DP)によるプライバシー保証を特徴付け、連合学習における収束性能を分析する。
論文 参考訳(メタデータ) (2022-01-25T04:43:29Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Robust and Differentially Private Mean Estimation [40.323756738056616]
異なるプライバシーは、米国国勢調査から商用デバイスで収集されたデータまで、さまざまなアプリケーションで標準要件として浮上しています。
このようなデータベースの数は、複数のソースからのデータからなり、それらすべてが信頼できるわけではない。
これにより、既存のプライベート分析は、腐敗したデータを注入する敵による攻撃に弱い。
論文 参考訳(メタデータ) (2021-02-18T05:02:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。