論文の概要: House-GAN++: Generative Adversarial Layout Refinement Networks
- arxiv url: http://arxiv.org/abs/2103.02574v1
- Date: Wed, 3 Mar 2021 18:15:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-04 14:57:20.123316
- Title: House-GAN++: Generative Adversarial Layout Refinement Networks
- Title(参考訳): House-GAN++: 汎用的なレイアウトリファインメントネットワーク
- Authors: Nelson Nauata, Sepidehsadat Hosseini, Kai-Hung Chang, Hang Chu,
Chin-Yi Cheng, Yasutaka Furukawa
- Abstract要約: 我々のアーキテクチャはグラフ制約付きGANと条件付きGANの統合であり、そこでは以前に生成されたレイアウトが次の入力制約となる。
我々の研究の驚くべき発見は、コンポーネントワイドGTコンディショニングと呼ばれる単純な非イテレーティブトレーニングプロセスが、そのようなジェネレータの学習に有効であることである。
- 参考スコア(独自算出の注目度): 37.60108582423617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a novel generative adversarial layout refinement network
for automated floorplan generation. Our architecture is an integration of a
graph-constrained relational GAN and a conditional GAN, where a previously
generated layout becomes the next input constraint, enabling iterative
refinement. A surprising discovery of our research is that a simple
non-iterative training process, dubbed component-wise GT-conditioning, is
effective in learning such a generator. The iterative generator also creates a
new opportunity in further improving a metric of choice via meta-optimization
techniques by controlling when to pass which input constraints during iterative
layout refinement. Our qualitative and quantitative evaluation based on the
three standard metrics demonstrate that the proposed system makes significant
improvements over the current state-of-the-art, even competitive against the
ground-truth floorplans, designed by professional architects.
- Abstract(参考訳): 本稿では,自動フロアプラン生成のための新しい生成逆配置改善ネットワークを提案する。
私たちのアーキテクチャは、グラフ制約付きリレーショナルGANと条件付きGANの統合であり、以前に生成されたレイアウトが次の入力制約となり、反復的な洗練を可能にします。
我々の研究の驚くべき発見は、コンポーネントワイドGTコンディショニングと呼ばれる単純な非イテレーティブトレーニングプロセスが、そのようなジェネレータの学習に有効であることである。
イテレーティブジェネレータはまた、イテレーティブレイアウトのリファインメント中にどの入力制約をパスするかを制御し、メタ最適化技術によって選択のメトリクスをさらに改善する新たな機会を生み出している。
3つの基準に基づく定性評価と定量的評価により、提案システムは、プロの建築家が設計した地上階計画に匹敵する、現在の最先端のものよりも大幅に改善されることを示しています。
関連論文リスト
- Towards Automated Machine Learning Research [4.169915659794567]
本稿では、コンポーネントレベルのイノベーションを通じて、機械学習研究における漸進的な進歩を自動化するためのトップダウンアプローチについて検討する。
本フレームワークは,新しいコンポーネントを体系的に生成し,その実現可能性を評価し,既存のベースラインに対して性能を評価する。
予測仮説の優先順位付けに報奨モデルを導入することにより,仮説生成および評価プロセスの効率化を目指す。
論文 参考訳(メタデータ) (2024-09-09T00:47:30Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOptは、制御可能・拡散モデルに基づく構造に基づく分子最適化手法である。
DecompOptは強いde novoベースラインよりも優れた特性を持つ分子を効率よく生成できることを示す。
論文 参考訳(メタデータ) (2024-03-07T02:53:40Z) - Generative Structural Design Integrating BIM and Diffusion Model [4.619347136761891]
本研究では,ビルディング情報モデリング(BIM)をインテリジェントな構造設計に適用し,BIMと生成AIを統合した構造設計パイプラインを確立する。
人図作成のプロセスにインスパイアされた生成フレームワークでは,AIモデルの生成困難を軽減するため,新たな2段階生成フレームワークが提案されている。
生成型AIツールでは、広く使われているGANベースのモデルを置き換えるために拡散モデル(DM)を導入し、新しい物理ベースの条件付き拡散モデル(PCDM)を提案し、異なる設計の前提条件を検討する。
論文 参考訳(メタデータ) (2023-11-07T15:05:19Z) - Rethinking Decision Transformer via Hierarchical Reinforcement Learning [54.3596066989024]
決定変換器(Decision Transformer, DT)は、強化学習(RL)における変換器アーキテクチャの最近の進歩を活用する革新的なアルゴリズムである。
本稿では,階層RLのレンズを用いたシーケンシャル意思決定のための汎用シーケンスモデリングフレームワークを提案する。
DTは、高レベルかつ低レベルなポリシーを選択することで、このフレームワークの特別なケースとして現れ、これらの選択の潜在的な失敗について議論する。
論文 参考訳(メタデータ) (2023-11-01T03:32:13Z) - Nonlinear MPC design for incrementally ISS systems with application to
GRU networks [0.0]
本稿では,指数関数的にインクリメンタルな入力-状態安定(ISS)システムのためのモデル予測制御(NMPC)戦略の設計について述べる。
設計手法は、リカレントニューラルネットワーク(RNN)によって学習されたシステムの制御に特に適している。
このアプローチは Gated Recurrent Unit (GRU) ネットワークに適用され、収束保証を備えた調整状態オブザーバの設計方法も提供する。
論文 参考訳(メタデータ) (2023-09-28T13:26:20Z) - End-to-end Graph-constrained Vectorized Floorplan Generation with
Panoptic Refinement [16.103152098205566]
本研究では,1次元ベクトルのシーケンスとしてフロアプランを合成することを目的としている。
最初の段階では,ユーザが入力した部屋接続グラフをGCN(Graphal Network)でエンコードし,自動回帰トランスフォーマネットワークを適用して初期フロアプランを生成する。
初期設計を洗練し、より視覚的に魅力的なフロアプランを生成するために、GCNとトランスフォーマーネットワークからなる新しい汎視補正ネットワーク(PRN)を提案する。
論文 参考訳(メタデータ) (2022-07-27T03:19:20Z) - Topic-Controllable Summarization: Topic-Aware Evaluation and Transformer Methods [4.211128681972148]
Topic-controllable summarization(トピック制御可能な要約)は、幅広い潜在的応用を持つ新興の研究分野である。
本研究は,生成した要約を自動的に評価する話題指向評価尺度を提案する。
さらに,強力なトランスフォーマーアーキテクチャを扱うためにトピック埋め込みを適用し,制御トークンによる要約生成を導くための,新しい,効率的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-06-09T07:28:16Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
ベストレスポンス制約(Best-Response Constraint、BRC)は、ジェネレータのディスクリミネータへの依存性を明示的に定式化する一般的な学習フレームワークである。
モチベーションや定式化の相違があっても, フレキシブルBRC法により, 様々なGANが一様に改善できることが示される。
論文 参考訳(メタデータ) (2022-05-20T12:42:41Z) - Dynamically Grown Generative Adversarial Networks [111.43128389995341]
本稿では、ネットワークアーキテクチャとそのパラメータを自動化とともに最適化し、トレーニング中にGANを動的に成長させる手法を提案する。
本手法はアーキテクチャ探索手法を勾配に基づく訓練とインターリーブステップとして組み込んで,ジェネレータと識別器の最適アーキテクチャ成長戦略を定期的に探究する。
論文 参考訳(メタデータ) (2021-06-16T01:25:51Z) - House-GAN: Relational Generative Adversarial Networks for
Graph-constrained House Layout Generation [59.86153321871127]
主な考え方は、制約をリレーショナルネットワークのグラフ構造にエンコードすることである。
我々は、新しい住宅レイアウト生成問題に対する提案されたアーキテクチャを実証した。
論文 参考訳(メタデータ) (2020-03-16T03:16:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。