論文の概要: Generative Structural Design Integrating BIM and Diffusion Model
- arxiv url: http://arxiv.org/abs/2311.04052v1
- Date: Tue, 7 Nov 2023 15:05:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-08 15:12:24.781718
- Title: Generative Structural Design Integrating BIM and Diffusion Model
- Title(参考訳): BIMと拡散モデルを統合した生成的構造設計
- Authors: Zhili He, Yu-Hsing Wang, Jian Zhang
- Abstract要約: 本研究では,ビルディング情報モデリング(BIM)をインテリジェントな構造設計に適用し,BIMと生成AIを統合した構造設計パイプラインを確立する。
人図作成のプロセスにインスパイアされた生成フレームワークでは,AIモデルの生成困難を軽減するため,新たな2段階生成フレームワークが提案されている。
生成型AIツールでは、広く使われているGANベースのモデルを置き換えるために拡散モデル(DM)を導入し、新しい物理ベースの条件付き拡散モデル(PCDM)を提案し、異なる設計の前提条件を検討する。
- 参考スコア(独自算出の注目度): 4.619347136761891
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Intelligent structural design using AI can effectively reduce time overhead
and increase efficiency. It has potential to become the new design paradigm in
the future to assist and even replace engineers, and so it has become a
research hotspot in the academic community. However, current methods have some
limitations to be addressed, whether in terms of application scope, visual
quality of generated results, or evaluation metrics of results. This study
proposes a comprehensive solution. Firstly, we introduce building information
modeling (BIM) into intelligent structural design and establishes a structural
design pipeline integrating BIM and generative AI, which is a powerful
supplement to the previous frameworks that only considered CAD drawings. In
order to improve the perceptual quality and details of generations, this study
makes 3 contributions. Firstly, in terms of generation framework, inspired by
the process of human drawing, a novel 2-stage generation framework is proposed
to replace the traditional end-to-end framework to reduce the generation
difficulty for AI models. Secondly, in terms of generative AI tools adopted,
diffusion models (DMs) are introduced to replace widely used generative
adversarial network (GAN)-based models, and a novel physics-based conditional
diffusion model (PCDM) is proposed to consider different design prerequisites.
Thirdly, in terms of neural networks, an attention block (AB) consisting of a
self-attention block (SAB) and a parallel cross-attention block (PCAB) is
designed to facilitate cross-domain data fusion. The quantitative and
qualitative results demonstrate the powerful generation and representation
capabilities of PCDM. Necessary ablation studies are conducted to examine the
validity of the methods. This study also shows that DMs have the potential to
replace GANs and become the new benchmark for generative problems in civil
engineering.
- Abstract(参考訳): AIを用いたインテリジェントな構造設計は、時間オーバーヘッドを効果的に削減し、効率を向上する。
将来、エンジニアを支援して置き換える新しいデザインパラダイムになる可能性があり、学術界では研究のホットスポットとなっている。
しかし、現在の手法には、アプリケーションの範囲、生成された結果の視覚的品質、結果の評価基準など、いくつかの制限がある。
本研究は包括的解決法を提案する。
まず,知的構造設計にビルディング・インフォメーション・モデリング(bim)を導入し,従来のcad描画のみを考慮したフレームワークの強力な補完であるbimとジェネレーティブaiを統合した構造設計パイプラインを確立する。
知覚の質と世代の詳細を改善するために,本研究では3つの貢献を行う。
第一に、人間の描画のプロセスにインスパイアされた生成フレームワークにおいて、従来のエンドツーエンドフレームワークを置き換えるために、2段階生成フレームワークが提案され、AIモデルの生成困難が軽減される。
次に, 生成型aiツールに関して, 広く用いられている生成型逆ネットワーク(gan)モデルを置き換えるために拡散モデル(dms)を導入し, 異なる設計条件を考慮した新しい物理ベースの条件付き拡散モデル(pcdm)を提案する。
第3に、ニューラルネットワークの分野では、自己注意ブロック(SAB)と並列横断ブロック(PCAB)からなるアテンションブロック(AB)が、クロスドメインデータの融合を容易にするように設計されている。
定量的および定性的な結果は、PCDMの強力な生成と表現能力を示す。
方法の妥当性を検討するために, 必要なアブレーション研究を行う。
この研究は、DMがGANを置き換える可能性があり、土木工学における生成問題の新たなベンチマークとなることも示している。
関連論文リスト
- A Survey of Model Architectures in Information Retrieval [64.75808744228067]
機能抽出のためのバックボーンモデルと、関連性推定のためのエンドツーエンドシステムアーキテクチャの2つの重要な側面に焦点を当てる。
従来の用語ベースの手法から現代のニューラルアプローチまで,特にトランスフォーマーベースのモデルとそれに続く大規模言語モデル(LLM)の影響が注目されている。
我々は、パフォーマンスとスケーラビリティのアーキテクチャ最適化、マルチモーダル、マルチランガルデータの処理、従来の検索パラダイムを超えた新しいアプリケーションドメインへの適応など、新たな課題と今後の方向性について議論することで結論付けた。
論文 参考訳(メタデータ) (2025-02-20T18:42:58Z) - Towards Automating the Retrospective Generation of BIM Models: A Unified Framework for 3D Semantic Reconstruction of the Built Environment [0.0]
情報モデリングの構築は建設プロジェクトで有益である。
しかし、3Dモデルの詳細をBIMに変換する統一的でスケーラブルなフレームワークがないため、課題に直面している。
本稿では,BIM生成のための統合意味再構築アーキテクチャであるSR BIMを紹介する。
論文 参考訳(メタデータ) (2024-06-03T16:07:41Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
我々は、様々な計算プリミティブから構築された新しいハイブリッドアーキテクチャを特定し、テストする。
本研究では,大規模計算最適法則と新しい状態最適スケーリング法則解析を用いて,結果のアーキテクチャを実験的に検証する。
我々は,MAD合成法と計算-最適パープレキシティを相関させ,新しいアーキテクチャの正確な評価を可能にする。
論文 参考訳(メタデータ) (2024-03-26T16:33:12Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
構造に基づく薬物設計(SBDD)は、タンパク質の3次元幾何学を利用して、潜在的な薬物候補を特定する。
近年の幾何学的深層学習の進歩は、3次元幾何学的データを効果的に統合・処理し、この分野を前進させてきた。
論文 参考訳(メタデータ) (2023-06-20T14:21:58Z) - AI-Empowered Hybrid MIMO Beamforming [85.48860461696417]
ハイブリッドマルチインプット・マルチアウトプット(MIMO)システムは、アナログおよびデジタルのビームフォーミングの一部を実装している。
近年、ハイブリッドビームフォーミング設計にデータ支援人工知能(AI)ツールを使うことへの関心が高まっている。
本稿では、リアルタイムハイブリッドビームフォーミング設計を改善するために、データを活用するための候補戦略についてレビューする。
論文 参考訳(メタデータ) (2023-03-03T06:04:20Z) - Low-dimensional Data-based Surrogate Model of a Continuum-mechanical
Musculoskeletal System Based on Non-intrusive Model Order Reduction [0.0]
データ駆動型モデルオーダーリダクションを用いた代理モデルのような従来の手法は、高忠実度モデルをより広く利用するために用いられる。
ヒト上腕部の複素有限要素モデルに対する代理モデル手法の利点を実証する。
論文 参考訳(メタデータ) (2023-02-13T17:14:34Z) - Universal Information Extraction as Unified Semantic Matching [54.19974454019611]
情報抽出を,異なるタスクやスキーマで共有される構造化と概念化という,2つの能力に分割する。
このパラダイムに基づいて、統一意味マッチングフレームワークを用いて様々なIEタスクを普遍的にモデル化することを提案する。
このように、USMはスキーマと入力テキストを共同でエンコードし、サブ構造を一様に並列に抽出し、必要に応じてターゲット構造を制御できる。
論文 参考訳(メタデータ) (2023-01-09T11:51:31Z) - Biologically Inspired Design Concept Generation Using Generative
Pre-Trained Transformers [13.852758740799452]
本稿では、生成事前学習言語モデル(PLM)に基づく生成設計手法を提案する。
問題空間表現のゆるさに応じて、3種類の設計概念生成器をPLMから同定し、微調整する。
このアプローチは評価され、その後、軽量の空飛ぶ自動車を設計する現実世界のプロジェクトで使用される。
論文 参考訳(メタデータ) (2022-12-26T16:06:04Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
本稿では,条件付き変分オートエンコーダ(CVAE)による人間設計者向上のための性能駆動型設計探索フレームワークを提案する。
CVAEはスイスの歩行者橋の合成例18万件で訓練されている。
論文 参考訳(メタデータ) (2022-11-29T17:28:31Z) - Design Target Achievement Index: A Differentiable Metric to Enhance Deep
Generative Models in Multi-Objective Inverse Design [4.091593765662773]
設計目標達成指標(Design Target Achievement Index, DTAI)は、設計者が指定した最小パフォーマンス目標を達成するための設計能力を評価する、微分可能で調整可能な指標である。
DTAIをPaDGAN(Performance-Augmented Diverse GAN)に適用し,ベースラインのDeep Generative Modelよりも優れた生成性能を示す。
論文 参考訳(メタデータ) (2022-05-06T04:14:34Z) - Generative Pre-Trained Transformers for Biologically Inspired Design [13.852758740799452]
本稿では,事前学習言語モデル(PLM)に基づく生成設計手法を提案する。
問題空間表現のゆるさに応じて、3種類の設計概念生成器をPLMから同定し、微調整する。
このアプローチは、自然にインスパイアされた軽量の空飛ぶ車の概念の生成と評価に微調整されたモデルを適用するケーススタディによってテストされる。
論文 参考訳(メタデータ) (2022-03-31T11:13:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。