Shift Invariance Can Reduce Adversarial Robustness
- URL: http://arxiv.org/abs/2103.02695v1
- Date: Wed, 3 Mar 2021 21:27:56 GMT
- Title: Shift Invariance Can Reduce Adversarial Robustness
- Authors: Songwei Ge, Vasu Singla, Ronen Basri, David Jacobs
- Abstract summary: Shift invariance is a critical property of CNNs that improves performance on classification.
We show that invariance to circular shifts can also lead to greater sensitivity to adversarial attacks.
- Score: 20.199887291186364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Shift invariance is a critical property of CNNs that improves performance on
classification. However, we show that invariance to circular shifts can also
lead to greater sensitivity to adversarial attacks. We first characterize the
margin between classes when a shift-invariant linear classifier is used. We
show that the margin can only depend on the DC component of the signals. Then,
using results about infinitely wide networks, we show that in some simple
cases, fully connected and shift-invariant neural networks produce linear
decision boundaries. Using this, we prove that shift invariance in neural
networks produces adversarial examples for the simple case of two classes, each
consisting of a single image with a black or white dot on a gray background.
This is more than a curiosity; we show empirically that with real datasets and
realistic architectures, shift invariance reduces adversarial robustness.
Finally, we describe initial experiments using synthetic data to probe the
source of this connection.
Related papers
- Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers [0.7704032792820767]
Deep neural networks are applied in more and more areas of everyday life.
They still lack essential abilities, such as robustly dealing with spatially transformed input signals.
We propose a novel technique to emulate such an inference process for neural nets.
arXiv Detail & Related papers (2024-05-06T09:47:29Z) - Color Equivariant Convolutional Networks [50.655443383582124]
CNNs struggle if there is data imbalance between color variations introduced by accidental recording conditions.
We propose Color Equivariant Convolutions ( CEConvs), a novel deep learning building block that enables shape feature sharing across the color spectrum.
We demonstrate the benefits of CEConvs in terms of downstream performance to various tasks and improved robustness to color changes, including train-test distribution shifts.
arXiv Detail & Related papers (2023-10-30T09:18:49Z) - Revisiting Data Augmentation for Rotational Invariance in Convolutional
Neural Networks [0.29127054707887967]
We investigate how best to include rotational invariance in a CNN for image classification.
Our experiments show that networks trained with data augmentation alone can classify rotated images nearly as well as in the normal unrotated case.
arXiv Detail & Related papers (2023-10-12T15:53:24Z) - What Affects Learned Equivariance in Deep Image Recognition Models? [10.590129221143222]
We find evidence for a correlation between learned translation equivariance and validation accuracy on ImageNet.
Data augmentation, reduced model capacity and inductive bias in the form of convolutions induce higher learned equivariance in neural networks.
arXiv Detail & Related papers (2023-04-05T17:54:25Z) - On the effectiveness of partial variance reduction in federated learning
with heterogeneous data [27.527995694042506]
We show that the diversity of the final classification layers across clients impedes the performance of the FedAvg algorithm.
Motivated by this, we propose to correct model by variance reduction only on the final layers.
We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost.
arXiv Detail & Related papers (2022-12-05T11:56:35Z) - Do Deep Networks Transfer Invariances Across Classes? [123.84237389985236]
We show how a generative approach for learning the nuisance transformations can help transfer invariances across classes.
Our results provide one explanation for why classifiers generalize poorly on unbalanced and longtailed distributions.
arXiv Detail & Related papers (2022-03-18T04:38:18Z) - Mitigating Generation Shifts for Generalized Zero-Shot Learning [52.98182124310114]
Generalized Zero-Shot Learning (GZSL) is the task of leveraging semantic information (e.g., attributes) to recognize the seen and unseen samples, where unseen classes are not observable during training.
We propose a novel Generation Shifts Mitigating Flow framework for learning unseen data synthesis efficiently and effectively.
Experimental results demonstrate that GSMFlow achieves state-of-the-art recognition performance in both conventional and generalized zero-shot settings.
arXiv Detail & Related papers (2021-07-07T11:43:59Z) - ECINN: Efficient Counterfactuals from Invertible Neural Networks [80.94500245955591]
We propose a method, ECINN, that utilizes the generative capacities of invertible neural networks for image classification to generate counterfactual examples efficiently.
ECINN has a closed-form expression and generates a counterfactual in the time of only two evaluations.
Our experiments demonstrate how ECINN alters class-dependent image regions to change the perceptual and predicted class of the counterfactuals.
arXiv Detail & Related papers (2021-03-25T09:23:24Z) - Truly shift-invariant convolutional neural networks [0.0]
Recent works have shown that the output of a CNN can change significantly with small shifts in input.
We propose adaptive polyphase sampling (APS), a simple sub-sampling scheme that allows convolutional neural networks to achieve 100% consistency in classification performance under shifts.
arXiv Detail & Related papers (2020-11-28T20:57:35Z) - What Does CNN Shift Invariance Look Like? A Visualization Study [87.79405274610681]
Feature extraction with convolutional neural networks (CNNs) is a popular method to represent images for machine learning tasks.
We focus on measuring and visualizing the shift invariance of extracted features from popular off-the-shelf CNN models.
We conclude that features extracted from popular networks are not globally invariant, and that biases and artifacts exist within this variance.
arXiv Detail & Related papers (2020-11-09T01:16:30Z) - Embedding Propagation: Smoother Manifold for Few-Shot Classification [131.81692677836202]
We propose to use embedding propagation as an unsupervised non-parametric regularizer for manifold smoothing in few-shot classification.
We empirically show that embedding propagation yields a smoother embedding manifold.
We show that embedding propagation consistently improves the accuracy of the models in multiple semi-supervised learning scenarios by up to 16% points.
arXiv Detail & Related papers (2020-03-09T13:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.