Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers
- URL: http://arxiv.org/abs/2405.03730v2
- Date: Mon, 27 May 2024 12:09:08 GMT
- Title: Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers
- Authors: Johann Schmidt, Sebastian Stober,
- Abstract summary: Deep neural networks are applied in more and more areas of everyday life.
They still lack essential abilities, such as robustly dealing with spatially transformed input signals.
We propose a novel technique to emulate such an inference process for neural nets.
- Score: 0.7704032792820767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks are applied in more and more areas of everyday life. However, they still lack essential abilities, such as robustly dealing with spatially transformed input signals. Approaches to mitigate this severe robustness issue are limited to two pathways: Either models are implicitly regularised by increased sample variability (data augmentation) or explicitly constrained by hard-coded inductive biases. The limiting factor of the former is the size of the data space, which renders sufficient sample coverage intractable. The latter is limited by the engineering effort required to develop such inductive biases for every possible scenario. Instead, we take inspiration from human behaviour, where percepts are modified by mental or physical actions during inference. We propose a novel technique to emulate such an inference process for neural nets. This is achieved by traversing a sparsified inverse transformation tree during inference using parallel energy-based evaluations. Our proposed inference algorithm, called Inverse Transformation Search (ITS), is model-agnostic and equips the model with zero-shot pseudo-invariance to spatially transformed inputs. We evaluated our method on several benchmark datasets, including a synthesised ImageNet test set. ITS outperforms the utilised baselines on all zero-shot test scenarios.
Related papers
- Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - QGait: Toward Accurate Quantization for Gait Recognition with Binarized Input [17.017127559393398]
We propose a differentiable soft quantizer, which better simulates the gradient of the round function during backpropagation.
This enables the network to learn from subtle input perturbations.
We further refine the training strategy to ensure convergence while simulating quantization errors.
arXiv Detail & Related papers (2024-05-22T17:34:18Z) - Few-Shot Class Incremental Learning via Robust Transformer Approach [16.590193619691416]
Few-Shot Class-Incremental Learning presents an extension of the Class Incremental Learning problem where a model is faced with the problem of data scarcity.
This problem remains an open problem because all recent works are built upon the convolutional neural networks performing sub-optimally.
Our paper presents Robust Transformer Approach built upon the Compact Convolution Transformer.
arXiv Detail & Related papers (2024-05-08T03:35:52Z) - All Roads Lead to Rome? Exploring the Invariance of Transformers'
Representations [69.3461199976959]
We propose a model based on invertible neural networks, BERT-INN, to learn the Bijection Hypothesis.
We show the advantage of BERT-INN both theoretically and through extensive experiments.
arXiv Detail & Related papers (2023-05-23T22:30:43Z) - Training Discrete Deep Generative Models via Gapped Straight-Through
Estimator [72.71398034617607]
We propose a Gapped Straight-Through ( GST) estimator to reduce the variance without incurring resampling overhead.
This estimator is inspired by the essential properties of Straight-Through Gumbel-Softmax.
Experiments demonstrate that the proposed GST estimator enjoys better performance compared to strong baselines on two discrete deep generative modeling tasks.
arXiv Detail & Related papers (2022-06-15T01:46:05Z) - Mitigating Generation Shifts for Generalized Zero-Shot Learning [52.98182124310114]
Generalized Zero-Shot Learning (GZSL) is the task of leveraging semantic information (e.g., attributes) to recognize the seen and unseen samples, where unseen classes are not observable during training.
We propose a novel Generation Shifts Mitigating Flow framework for learning unseen data synthesis efficiently and effectively.
Experimental results demonstrate that GSMFlow achieves state-of-the-art recognition performance in both conventional and generalized zero-shot settings.
arXiv Detail & Related papers (2021-07-07T11:43:59Z) - Entropy Maximization and Meta Classification for Out-Of-Distribution
Detection in Semantic Segmentation [7.305019142196585]
"Out-of-distribution" (OoD) samples are crucial for many applications such as automated driving.
A natural baseline approach to OoD detection is to threshold on the pixel-wise softmax entropy.
We present a two-step procedure that significantly improves that approach.
arXiv Detail & Related papers (2020-12-09T11:01:06Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Uncertainty Inspired RGB-D Saliency Detection [70.50583438784571]
We propose the first framework to employ uncertainty for RGB-D saliency detection by learning from the data labeling process.
Inspired by the saliency data labeling process, we propose a generative architecture to achieve probabilistic RGB-D saliency detection.
Results on six challenging RGB-D benchmark datasets show our approach's superior performance in learning the distribution of saliency maps.
arXiv Detail & Related papers (2020-09-07T13:01:45Z) - Multinomial Sampling for Hierarchical Change-Point Detection [0.0]
We propose a multinomial sampling methodology that improves the detection rate and reduces the delay.
Our experiments show results that outperform the baseline method and we also provide an example oriented to a human behavior study.
arXiv Detail & Related papers (2020-07-24T09:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.