Unsupervised Domain Adaptation for Image Classification via
Structure-Conditioned Adversarial Learning
- URL: http://arxiv.org/abs/2103.02808v1
- Date: Thu, 4 Mar 2021 03:12:54 GMT
- Title: Unsupervised Domain Adaptation for Image Classification via
Structure-Conditioned Adversarial Learning
- Authors: Hui Wang, Jian Tian, Songyuan Li, Hanbin Zhao, Qi Tian, Fei Wu, and Xi
Li
- Abstract summary: Unsupervised domain adaptation (UDA) typically carries out knowledge transfer from a label-rich source domain to an unlabeled target domain by adversarial learning.
We propose an end-to-end structure-conditioned adversarial learning scheme (SCAL) that is able to preserve the intra-class compactness during domain distribution alignment.
- Score: 70.79486026698419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation (UDA) typically carries out knowledge transfer
from a label-rich source domain to an unlabeled target domain by adversarial
learning. In principle, existing UDA approaches mainly focus on the global
distribution alignment between domains while ignoring the intrinsic local
distribution properties. Motivated by this observation, we propose an
end-to-end structure-conditioned adversarial learning scheme (SCAL) that is
able to preserve the intra-class compactness during domain distribution
alignment. By using local structures as structure-aware conditions, the
proposed scheme is implemented in a structure-conditioned adversarial learning
pipeline. The above learning procedure is iteratively performed by alternating
between local structures establishment and structure-conditioned adversarial
learning. Experimental results demonstrate the effectiveness of the proposed
scheme in UDA scenarios.
Related papers
- Gradually Vanishing Gap in Prototypical Network for Unsupervised Domain Adaptation [32.58201185195226]
We propose an efficient UDA framework named Gradually Vanishing Gap in Prototypical Network (GVG-PN)
Our model achieves transfer learning from both global and local perspectives.
Experiments on several UDA benchmarks validated that the proposed GVG-PN can clearly outperform the SOTA models.
arXiv Detail & Related papers (2024-05-28T03:03:32Z) - SMC-UDA: Structure-Modal Constraint for Unsupervised Cross-Domain Renal
Segmentation [100.86339246424541]
We propose a novel Structure-Modal Constrained (SMC) UDA framework based on a discriminative paradigm and introduce edge structure as a bridge between domains.
With the structure-constrained self-learning and progressive ROI, our methods segment the kidney by locating the 3D spatial structure of the edge.
experiments show that our proposed SMC-UDA has a strong generalization and outperforms generative UDA methods.
arXiv Detail & Related papers (2023-06-14T02:57:23Z) - Discriminative Radial Domain Adaptation [62.22362756424971]
We propose Discriminative Radial Domain Adaptation (DRDR) which bridges source and target domains via a shared radial structure.
We show that transferring such an inherently discriminative structure would enable to enhance feature transferability and discriminability simultaneously.
Our method is shown to consistently outperforms state-of-the-art approaches on varied tasks.
arXiv Detail & Related papers (2023-01-01T10:56:31Z) - Relation Matters: Foreground-aware Graph-based Relational Reasoning for
Domain Adaptive Object Detection [81.07378219410182]
We propose a new and general framework for DomainD, named Foreground-aware Graph-based Reasoning (FGRR)
FGRR incorporates graph structures into the detection pipeline to explicitly model the intra- and inter-domain foreground object relations.
Empirical results demonstrate that the proposed FGRR exceeds the state-of-the-art on four DomainD benchmarks.
arXiv Detail & Related papers (2022-06-06T05:12:48Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z) - Contextual-Relation Consistent Domain Adaptation for Semantic
Segmentation [44.19436340246248]
This paper presents an innovative local contextual-relation consistent domain adaptation technique.
It aims to achieve local-level consistencies during the global-level alignment.
Experiments demonstrate its superior segmentation performance as compared with state-of-the-art methods.
arXiv Detail & Related papers (2020-07-05T19:00:46Z) - Domain Adaptation by Class Centroid Matching and Local Manifold
Self-Learning [8.316259570013813]
We propose a novel domain adaptation approach, which can thoroughly explore the data distribution structure of target domain.
We regard the samples within the same cluster in target domain as a whole rather than individuals and assigns pseudo-labels to the target cluster by class centroid matching.
An efficient iterative optimization algorithm is designed to solve the objective function of our proposal with theoretical convergence guarantee.
arXiv Detail & Related papers (2020-03-20T16:59:27Z) - Unsupervised Domain Adaptation via Structurally Regularized Deep
Clustering [35.008158504090176]
Unsupervised domain adaptation (UDA) is to make predictions for unlabeled data on a target domain, given labeled data on a source domain whose distribution shifts from the target one.
We propose to directly uncover the intrinsic target discrimination via discriminative clustering of target data.
We term our proposed method as Structurally Regularized Deep Clustering (SRDC), where we also enhance target discrimination with clustering of intermediate network features.
arXiv Detail & Related papers (2020-03-19T07:26:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.