A Cross Channel Context Model for Latents in Deep Image Compression
- URL: http://arxiv.org/abs/2103.02884v1
- Date: Thu, 4 Mar 2021 08:13:04 GMT
- Title: A Cross Channel Context Model for Latents in Deep Image Compression
- Authors: Changyue Ma, Zhao Wang, Ruling Liao, Yan Ye
- Abstract summary: This paper presents a cross channel context model for latents in deep image compression.
The proposed model is combined with the joint autoregressive and hierarchical prior entropy model.
Using PSNR as the distortion metric, the combined model achieves BD-rate reductions of 6.30% and 6.31% over the baseline entropy model.
- Score: 10.20672454399047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a cross channel context model for latents in deep image
compression. Generally, deep image compression is based on an autoencoder
framework, which transforms the original image to latents at the encoder and
recovers the reconstructed image from the quantized latents at the decoder. The
transform is usually combined with an entropy model, which estimates the
probability distribution of the quantized latents for arithmetic coding.
Currently, joint autoregressive and hierarchical prior entropy models are
widely adopted to capture both the global contexts from the hyper latents and
the local contexts from the quantized latent elements. For the local contexts,
the widely adopted 2D mask convolution can only capture the spatial context.
However, we observe that there are strong correlations between different
channels in the latents. To utilize the cross channel correlations, we propose
to divide the latents into several groups according to channel index and code
the groups one by one, where previously coded groups are utilized to provide
cross channel context for the current group. The proposed cross channel context
model is combined with the joint autoregressive and hierarchical prior entropy
model. Experimental results show that, using PSNR as the distortion metric, the
combined model achieves BD-rate reductions of 6.30% and 6.31% over the baseline
entropy model, and 2.50% and 2.20% over the latest video coding standard
Versatile Video Coding (VVC) for the Kodak and CVPR CLIC2020 professional
dataset, respectively. In addition, when optimized for the MS-SSIM metric, our
approach generates visually more pleasant reconstructed images.
Related papers
- Improving Diffusion-Based Image Synthesis with Context Prediction [49.186366441954846]
Existing diffusion models mainly try to reconstruct input image from a corrupted one with a pixel-wise or feature-wise constraint along spatial axes.
We propose ConPreDiff to improve diffusion-based image synthesis with context prediction.
Our ConPreDiff consistently outperforms previous methods and achieves a new SOTA text-to-image generation results on MS-COCO, with a zero-shot FID score of 6.21.
arXiv Detail & Related papers (2024-01-04T01:10:56Z) - Corner-to-Center Long-range Context Model for Efficient Learned Image
Compression [70.0411436929495]
In the framework of learned image compression, the context model plays a pivotal role in capturing the dependencies among latent representations.
We propose the textbfCorner-to-Center transformer-based Context Model (C$3$M) designed to enhance context and latent predictions.
In addition, to enlarge the receptive field in the analysis and synthesis transformation, we use the Long-range Crossing Attention Module (LCAM) in the encoder/decoder.
arXiv Detail & Related papers (2023-11-29T21:40:28Z) - ConvNeXt-ChARM: ConvNeXt-based Transform for Efficient Neural Image
Compression [18.05997169440533]
We propose ConvNeXt-ChARM, an efficient ConvNeXt-based transform coding framework, paired with a compute-efficient channel-wise auto-regressive auto-regressive.
We show that ConvNeXt-ChARM brings consistent and significant BD-rate (PSNR) reductions estimated on average to 5.24% and 1.22% over the versatile video coding (VVC) reference encoder (VTM-18.0) and the state-of-the-art learned image compression method SwinT-ChARM.
arXiv Detail & Related papers (2023-07-12T11:45:54Z) - Exploring Effective Mask Sampling Modeling for Neural Image Compression [171.35596121939238]
Most existing neural image compression methods rely on side information from hyperprior or context models to eliminate spatial redundancy.
Inspired by the mask sampling modeling in recent self-supervised learning methods for natural language processing and high-level vision, we propose a novel pretraining strategy for neural image compression.
Our method achieves competitive performance with lower computational complexity compared to state-of-the-art image compression methods.
arXiv Detail & Related papers (2023-06-09T06:50:20Z) - Multiscale Augmented Normalizing Flows for Image Compression [17.441496966834933]
We present a novel concept, which adapts the hierarchical latent space for augmented normalizing flows, an invertible latent variable model.
Our best performing model achieved average rate savings of more than 7% over comparable single-scale models.
arXiv Detail & Related papers (2023-05-09T13:42:43Z) - Lossy Image Compression with Conditional Diffusion Models [25.158390422252097]
This paper outlines an end-to-end optimized lossy image compression framework using diffusion generative models.
In contrast to VAE-based neural compression, where the (mean) decoder is a deterministic neural network, our decoder is a conditional diffusion model.
Our approach yields stronger reported FID scores than the GAN-based model, while also yielding competitive performance with VAE-based models in several distortion metrics.
arXiv Detail & Related papers (2022-09-14T21:53:27Z) - Causal Contextual Prediction for Learned Image Compression [36.08393281509613]
We propose the concept of separate entropy coding to leverage a serial decoding process for causal contextual entropy prediction in the latent space.
A causal context model is proposed that separates the latents across channels and makes use of cross-channel relationships to generate highly informative contexts.
We also propose a causal global prediction model, which is able to find global reference points for accurate predictions of unknown points.
arXiv Detail & Related papers (2020-11-19T08:15:10Z) - Set Based Stochastic Subsampling [85.5331107565578]
We propose a set-based two-stage end-to-end neural subsampling model that is jointly optimized with an textitarbitrary downstream task network.
We show that it outperforms the relevant baselines under low subsampling rates on a variety of tasks including image classification, image reconstruction, function reconstruction and few-shot classification.
arXiv Detail & Related papers (2020-06-25T07:36:47Z) - Locally Masked Convolution for Autoregressive Models [107.4635841204146]
LMConv is a simple modification to the standard 2D convolution that allows arbitrary masks to be applied to the weights at each location in the image.
We learn an ensemble of distribution estimators that share parameters but differ in generation order, achieving improved performance on whole-image density estimation.
arXiv Detail & Related papers (2020-06-22T17:59:07Z) - Learning Context-Based Non-local Entropy Modeling for Image Compression [140.64888994506313]
In this paper, we propose a non-local operation for context modeling by employing the global similarity within the context.
The entropy model is further adopted as the rate loss in a joint rate-distortion optimization.
Considering that the width of the transforms is essential in training low distortion models, we finally produce a U-Net block in the transforms to increase the width with manageable memory consumption and time complexity.
arXiv Detail & Related papers (2020-05-10T13:28:18Z) - Generalized Octave Convolutions for Learned Multi-Frequency Image
Compression [20.504561050200365]
We propose the first learned multi-frequency image compression and entropy coding approach.
It is based on the recently developed octave convolutions to factorize the latents into high and low frequency (resolution) components.
We show that the proposed generalized octave convolution can improve the performance of other auto-encoder-based computer vision tasks.
arXiv Detail & Related papers (2020-02-24T01:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.