ConvNeXt-ChARM: ConvNeXt-based Transform for Efficient Neural Image
Compression
- URL: http://arxiv.org/abs/2307.06342v1
- Date: Wed, 12 Jul 2023 11:45:54 GMT
- Title: ConvNeXt-ChARM: ConvNeXt-based Transform for Efficient Neural Image
Compression
- Authors: Ahmed Ghorbel, Wassim Hamidouche and Luce Morin
- Abstract summary: We propose ConvNeXt-ChARM, an efficient ConvNeXt-based transform coding framework, paired with a compute-efficient channel-wise auto-regressive auto-regressive.
We show that ConvNeXt-ChARM brings consistent and significant BD-rate (PSNR) reductions estimated on average to 5.24% and 1.22% over the versatile video coding (VVC) reference encoder (VTM-18.0) and the state-of-the-art learned image compression method SwinT-ChARM.
- Score: 18.05997169440533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the last few years, neural image compression has gained wide attention
from research and industry, yielding promising end-to-end deep neural codecs
outperforming their conventional counterparts in rate-distortion performance.
Despite significant advancement, current methods, including attention-based
transform coding, still need to be improved in reducing the coding rate while
preserving the reconstruction fidelity, especially in non-homogeneous textured
image areas. Those models also require more parameters and a higher decoding
time. To tackle the above challenges, we propose ConvNeXt-ChARM, an efficient
ConvNeXt-based transform coding framework, paired with a compute-efficient
channel-wise auto-regressive prior to capturing both global and local contexts
from the hyper and quantized latent representations. The proposed architecture
can be optimized end-to-end to fully exploit the context information and
extract compact latent representation while reconstructing higher-quality
images. Experimental results on four widely-used datasets showed that
ConvNeXt-ChARM brings consistent and significant BD-rate (PSNR) reductions
estimated on average to 5.24% and 1.22% over the versatile video coding (VVC)
reference encoder (VTM-18.0) and the state-of-the-art learned image compression
method SwinT-ChARM, respectively. Moreover, we provide model scaling studies to
verify the computational efficiency of our approach and conduct several
objective and subjective analyses to bring to the fore the performance gap
between the next generation ConvNet, namely ConvNeXt, and Swin Transformer.
Related papers
- Unifying Generation and Compression: Ultra-low bitrate Image Coding Via
Multi-stage Transformer [35.500720262253054]
This paper introduces a novel Unified Image Generation-Compression (UIGC) paradigm, merging the processes of generation and compression.
A key feature of the UIGC framework is the adoption of vector-quantized (VQ) image models for tokenization.
Experiments demonstrate the superiority of the proposed UIGC framework over existing codecs in perceptual quality and human perception.
arXiv Detail & Related papers (2024-03-06T14:27:02Z) - Boosting Neural Representations for Videos with a Conditional Decoder [28.073607937396552]
Implicit neural representations (INRs) have emerged as a promising approach for video storage and processing.
This paper introduces a universal boosting framework for current implicit video representation approaches.
arXiv Detail & Related papers (2024-02-28T08:32:19Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - An Efficient Implicit Neural Representation Image Codec Based on Mixed Autoregressive Model for Low-Complexity Decoding [43.43996899487615]
Implicit Neural Representation (INR) for image compression is an emerging technology that offers two key benefits compared to cutting-edge autoencoder models.
We introduce a new Mixed AutoRegressive Model (MARM) to significantly reduce the decoding time for the current INR.
MARM includes our proposed AutoRegressive Upsampler (ARU) blocks, which are highly efficient, and ARM from previous work to balance decoding time and reconstruction quality.
arXiv Detail & Related papers (2024-01-23T09:37:58Z) - Corner-to-Center Long-range Context Model for Efficient Learned Image
Compression [70.0411436929495]
In the framework of learned image compression, the context model plays a pivotal role in capturing the dependencies among latent representations.
We propose the textbfCorner-to-Center transformer-based Context Model (C$3$M) designed to enhance context and latent predictions.
In addition, to enlarge the receptive field in the analysis and synthesis transformation, we use the Long-range Crossing Attention Module (LCAM) in the encoder/decoder.
arXiv Detail & Related papers (2023-11-29T21:40:28Z) - AICT: An Adaptive Image Compression Transformer [18.05997169440533]
We propose a more straightforward yet effective Tranformer-based channel-wise auto-regressive prior model, resulting in an absolute image compression transformer (ICT)
The proposed ICT can capture both global and local contexts from the latent representations.
We leverage a learnable scaling module with a sandwich ConvNeXt-based pre/post-processor to accurately extract more compact latent representation.
arXiv Detail & Related papers (2023-07-12T11:32:02Z) - Joint Hierarchical Priors and Adaptive Spatial Resolution for Efficient
Neural Image Compression [11.25130799452367]
We propose an absolute image compression transformer (ICT) for neural image compression (NIC)
ICT captures both global and local contexts from the latent representations and better parameterize the distribution of the quantized latents.
Our framework significantly improves the trade-off between coding efficiency and decoder complexity over the versatile video coding (VVC) reference encoder (VTM-18.0) and the neural SwinT-ChARM.
arXiv Detail & Related papers (2023-07-05T13:17:14Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
We introduce a modality-agnostic neural compression algorithm based on a functional view of data and parameterised as an Implicit Neural Representation (INR)
Bridging the gap between latent coding and sparsity, we obtain compact latent representations non-linearly mapped to a soft gating mechanism.
After obtaining a dataset of such latent representations, we directly optimise the rate/distortion trade-off in a modality-agnostic space using neural compression.
arXiv Detail & Related papers (2023-01-23T15:22:42Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
We build a neural data-dependent transform and introduce a continuous online mode decision mechanism to jointly optimize the coding efficiency for each individual image.
The experimental results show the effectiveness of the proposed neural-syntax design and the continuous online mode decision mechanism.
arXiv Detail & Related papers (2022-03-09T14:56:48Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.