論文の概要: Self-supervised deep convolutional neural network for chest X-ray
classification
- arxiv url: http://arxiv.org/abs/2103.03055v1
- Date: Thu, 4 Mar 2021 14:28:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-07 10:07:13.572934
- Title: Self-supervised deep convolutional neural network for chest X-ray
classification
- Title(参考訳): 胸部X線分類のための自己制御深部畳み込みニューラルネットワーク
- Authors: Matej Gazda, Jakub Gazda, Jan Plavka, Peter Drotar
- Abstract要約: 本研究では,ラベルのない胸部X線データセット上に事前訓練された自己監視型深部ニューラルネットワークを提案する。
4つの公開データセットで得られた結果は、私たちのアプローチが大量のラベル付きトレーニングデータを必要とせずに競争結果をもたらすことを示しています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chest radiography is a relatively cheap, widely available medical procedure
that conveys key information for making diagnostic decisions. Chest X-rays are
almost always used in the diagnosis of respiratory diseases such as pneumonia
or the recent COVID-19. In this paper, we propose a self-supervised deep neural
network that is pretrained on an unlabeled chest X-ray dataset. The learned
representations are transferred to downstream task - the classification of
respiratory diseases. The results obtained on four public datasets show that
our approach yields competitive results without requiring large amounts of
labeled training data.
- Abstract(参考訳): 胸部X線撮影は、診断決定を行うための重要な情報を伝える比較的安価で広く利用可能な医療手順です。
胸部x線は肺炎や最近のcovid-19などの呼吸器疾患の診断によく用いられる。
本論文では,ラベルのない胸部X線データセット上に予め訓練された自己監視型ディープニューラルネットワークを提案する。
学習された表現は、呼吸器疾患の分類である下流タスクに転送される。
4つの公開データセットで得られた結果は、私たちのアプローチが大量のラベル付きトレーニングデータを必要とせずに競争結果をもたらすことを示しています。
関連論文リスト
- FA-Net: A Fuzzy Attention-aided Deep Neural Network for Pneumonia Detection in Chest X-Rays [28.319405767795047]
肺炎(Pneumonia)は、細菌、真菌、ウイルスによって引き起こされる呼吸器感染症である。
早期診断は有効治療の確保と生存率の向上に不可欠である。
胸部X線画像を用いた自動肺炎検出のためのコンピュータ支援診断システムを開発した。
論文 参考訳(メタデータ) (2024-06-21T13:08:40Z) - Long-Tailed Classification of Thorax Diseases on Chest X-Ray: A New
Benchmark Study [75.05049024176584]
胸部X線上の胸部疾患の特定領域における長期学習問題についてベンチマーク研究を行った。
我々は,自然に分布する胸部X線データから学ぶことに集中し,一般的な「頭部」クラスだけでなく,稀ながら重要な「尾」クラスよりも分類精度を最適化する。
このベンチマークは、19と20の胸郭疾患分類のための2つの胸部X線データセットで構成され、53,000のクラスと7のラベル付きトレーニング画像を含む。
論文 参考訳(メタデータ) (2022-08-29T04:34:15Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
深層学習モデルは、胸部X線から新型コロナウイルスを識別するために開発された。
オープンソースデータのトレーニングやテストでは,結果は異例です。
データ分析とモデル評価は、人気のあるオープンソースデータセットであるCOVIDxが実際の臨床問題を代表していないことを示している。
論文 参考訳(メタデータ) (2021-09-14T10:59:11Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Pneumonia Detection on Chest X-ray using Radiomic Features and
Contrastive Learning [26.031452674698787]
胸部X線における肺炎の検出に放射線学的特徴と造影学習を活用した新しい枠組みを提案する。
rsna肺炎検出チャレンジデータセットの実験により,いくつかの最先端モデルに優れた結果が得られた。
論文 参考訳(メタデータ) (2021-01-12T02:52:24Z) - Contralaterally Enhanced Networks for Thoracic Disease Detection [120.60868136876599]
胸骨、肺野、気管支管など、胸部左右に類似した構造が多数存在する。
このような類似性は、広義の放射線学者の経験から、胸部X線における疾患の同定に利用することができる。
本稿では,病状提案の特徴表現を強化するために,対向的コンテキスト情報を活用するディープ・エンド・ツー・エンド・モジュールを提案する。
論文 参考訳(メタデータ) (2020-10-09T10:15:26Z) - RANDGAN: Randomized Generative Adversarial Network for Detection of
COVID-19 in Chest X-ray [0.0]
新型コロナウイルス(COVID-19)が世界中に広がる中で、医療機関は患者を診断し、必要な頻度で検査する能力を失っている。
研究は、胸部X線でウイルス性細菌性肺炎から新型コロナウイルスを検出できる有望な結果を示している。
本研究では,ラベルやトレーニングデータを必要とせず,未知のクラス(COVID-19)の画像を検出するランダム化生成敵ネットワーク(RANDGAN)を提案する。
論文 参考訳(メタデータ) (2020-10-06T15:58:09Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
我々は、トレーニングデータと同じデータセットでテストすると、ディープラーニングモデルが、異なるソースからデータセットでテストされると、パフォーマンスが低下し始めることを示す。
対戦型トレーニング戦略を用いることで、ネットワークはソース不変表現を学習せざるを得ないことを示す。
論文 参考訳(メタデータ) (2020-08-04T07:41:15Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
肺炎は小児の主要な死因であり、世界でも最多死亡率の1つである。
コンピュータ支援診断システムは診断精度を向上させる可能性を示した。
本研究では, 単発検出, 圧縮励起深部畳み込みニューラルネットワーク, 拡張, マルチタスク学習に基づく肺炎領域検出のための計算手法を開発した。
論文 参考訳(メタデータ) (2020-05-28T10:54:34Z) - Attention U-Net Based Adversarial Architectures for Chest X-ray Lung
Segmentation [0.0]
本稿では,診断パイプラインにおける基礎的,しかし困難な課題である肺分節に対する新しい深層学習手法を提案する。
本手法では, 逆批判モデルとともに, 最先端の完全畳み込みニューラルネットワークを用いる。
これは、患者プロファイルの異なる未確認データセットのCXRイメージによく当てはまり、JSRTデータセットの最終的なDSCRは97.5%に達した。
論文 参考訳(メタデータ) (2020-03-23T14:45:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。