論文の概要: Conservative Optimistic Policy Optimization via Multiple Importance
Sampling
- arxiv url: http://arxiv.org/abs/2103.03307v1
- Date: Thu, 4 Mar 2021 20:23:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-09 05:37:27.253836
- Title: Conservative Optimistic Policy Optimization via Multiple Importance
Sampling
- Title(参考訳): 多重重要度サンプリングによる保守的最適政策最適化
- Authors: Achraf Azize and Othman Gaizi
- Abstract要約: 強化学習(Reinforcement Learning)は、AtariゲームやGoのゲームといった難題を解決することができる。
現代のディープRLアプローチは、まだ現実世界のアプリケーションでは広く使われていない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning (RL) has been able to solve hard problems such as
playing Atari games or solving the game of Go, with a unified approach. Yet
modern deep RL approaches are still not widely used in real-world applications.
One reason could be the lack of guarantees on the performance of the
intermediate executed policies, compared to an existing (already working)
baseline policy. In this paper, we propose an online model-free algorithm that
solves conservative exploration in the policy optimization problem. We show
that the regret of the proposed approach is bounded by
$\tilde{\mathcal{O}}(\sqrt{T})$ for both discrete and continuous parameter
spaces.
- Abstract(参考訳): 強化学習(rl)は,アタリゲームのプレイやgoのゲーム解決といった難しい問題を,統一的なアプローチで解決することができる。
しかし、現代のディープRLアプローチは、まだ現実世界のアプリケーションでは広く使われていない。
理由の1つは、既存の(すでに稼働している)ベースラインポリシーと比較して、中間実行ポリシーのパフォーマンスに対する保証がないことである。
本論文では,政策最適化問題における保守的な探索を解くオンラインモデルフリーアルゴリズムを提案する。
提案されたアプローチの後悔は、離散パラメータ空間と連続パラメータ空間の両方に対して $\tilde{\mathcal{O}}(\sqrt{T})$ で有界であることを示した。
関連論文リスト
- A New Policy Iteration Algorithm For Reinforcement Learning in Zero-Sum
Markov Games [10.805520579293747]
ゲームに対するナイーブなポリシー反復の単純な変種は指数関数的に高速に収束することを示す。
また、線形マルコフゲームの関数近似設定において、ルックアヘッドポリシーを効率的に実装できることを示す。
論文 参考訳(メタデータ) (2023-03-17T01:20:22Z) - Offline Policy Optimization in RL with Variance Regularizaton [142.87345258222942]
定常分布補正を用いたオフラインRLアルゴリズムの分散正則化を提案する。
Fenchel双対性を用いることで、分散正規化器の勾配を計算するための二重サンプリング問題を回避することができることを示す。
オフライン分散正規化アルゴリズム(OVAR)は,既存のオフラインポリシー最適化アルゴリズムを拡張できる。
論文 参考訳(メタデータ) (2022-12-29T18:25:01Z) - Offline Reinforcement Learning with Closed-Form Policy Improvement
Operators [88.54210578912554]
行動制約付きポリシー最適化は、オフライン強化学習に対処するための成功パラダイムであることが示されている。
本稿では,閉形式政策改善演算子を提案する。
我々は、標準的なD4RLベンチマークにおいて、最先端アルゴリズムに対するそれらの効果を実証的に実証した。
論文 参考訳(メタデータ) (2022-11-29T06:29:26Z) - A Policy Efficient Reduction Approach to Convex Constrained Deep
Reinforcement Learning [2.811714058940267]
本稿では,最小基準点法(MNP)を一般化した条件勾配型アルゴリズムを提案する。
提案手法は,メモリコストを桁違いに削減し,その性能と効率を両立させる。
論文 参考訳(メタデータ) (2021-08-29T20:51:32Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
本稿では,RLアルゴリズムによって収集されたデータポイントの情報取得量を測定する,効率的なオンラインサブサンプリングフレームワークを確立する。
複雑性バウンド関数クラスを持つ値ベースのメソッドの場合、$proptooperatornamepolylog(K)$ timesに対してのみポリシーを更新する必要がある。
少なくとも$Omega(K)$倍のポリシーを更新する既存のアプローチとは対照的に、当社のアプローチはポリシーの解決における最適化コールの数を劇的に削減します。
論文 参考訳(メタデータ) (2021-06-14T07:36:25Z) - Policy Optimization as Online Learning with Mediator Feedback [46.845765216238135]
ポリシー最適化(PO)は、継続的制御タスクに対処するための広く使われているアプローチである。
本稿では、政策分野におけるオンライン学習問題としてpoを枠組みとする仲介者フィードバックの概念を紹介する。
本稿では,再帰的最小化のために,RIST (Multiple Importance Smpling with Truncation) を用いたアルゴリズム RANDomized-Exploration Policy Optimization を提案する。
論文 参考訳(メタデータ) (2020-12-15T11:34:29Z) - Robust Reinforcement Learning using Least Squares Policy Iteration with
Provable Performance Guarantees [3.8073142980733]
本稿では,ロバストマルコフ決定過程(RMDP)におけるモデルレス強化学習の課題について述べる。
本稿では、まず、ポリシー評価のための多段階オンラインモデルフリー学習アルゴリズムであるRobust Least Squares Policy Evaluationアルゴリズムを提案する。
次に,ロバスト・ラスト・スクエアズ・ポリシー・イテレーション (RLSPI) アルゴリズムを提案し,ロバスト・ラスト・スクエアズ・ポリシーを最適に学習する。
論文 参考訳(メタデータ) (2020-06-20T16:26:50Z) - Optimistic Policy Optimization with Bandit Feedback [70.75568142146493]
我々は,事前の報奨を後悔する$tilde O(sqrtS2 A H4 K)を定め,楽観的な信頼領域ポリシー最適化(TRPO)アルゴリズムを提案する。
我々の知る限り、この2つの結果は、未知の遷移と帯域幅フィードバックを持つポリシー最適化アルゴリズムにおいて得られた最初のサブ線形後悔境界である。
論文 参考訳(メタデータ) (2020-02-19T15:41:18Z) - Improved Algorithms for Conservative Exploration in Bandits [113.55554483194832]
文脈線形帯域設定における保守的学習問題について検討し、新しいアルゴリズムである保守的制約付きLinUCB(CLUCB2)を導入する。
我々は、既存の結果と一致したCLUCB2に対する後悔の限界を導き、多くの合成および実世界の問題において、最先端の保守的バンディットアルゴリズムよりも優れていることを実証的に示す。
論文 参考訳(メタデータ) (2020-02-08T19:35:01Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
本稿では,最適化アルゴリズム(OPPO)の最適変種を提案する。
OPPO は $tildeO(sqrtd2 H3 T )$ regret を達成する。
我々の知る限りでは、OPPOは、探索する最初の証明可能な効率的なポリシー最適化アルゴリズムである。
論文 参考訳(メタデータ) (2019-12-12T08:40:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。