論文の概要: Evaluation of Complexity Measures for Deep Learning Generalization in
Medical Image Analysis
- arxiv url: http://arxiv.org/abs/2103.03328v3
- Date: Wed, 19 Jul 2023 16:19:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-20 18:42:18.300083
- Title: Evaluation of Complexity Measures for Deep Learning Generalization in
Medical Image Analysis
- Title(参考訳): 医用画像解析における深層学習一般化のための複雑性尺度の評価
- Authors: Aleksandar Vakanski, Min Xian
- Abstract要約: PAC-ベイズ平坦度とパスノルムに基づく測度は、モデルとデータの組み合わせについて最も一貫した説明をもたらす。
また,乳房画像に対するマルチタスク分類とセグメンテーションのアプローチについても検討した。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The generalization performance of deep learning models for medical image
analysis often decreases on images collected with different devices for data
acquisition, device settings, or patient population. A better understanding of
the generalization capacity on new images is crucial for clinicians'
trustworthiness in deep learning. Although significant research efforts have
been recently directed toward establishing generalization bounds and complexity
measures, still, there is often a significant discrepancy between the predicted
and actual generalization performance. As well, related large empirical studies
have been primarily based on validation with general-purpose image datasets.
This paper presents an empirical study that investigates the correlation
between 25 complexity measures and the generalization abilities of supervised
deep learning classifiers for breast ultrasound images. The results indicate
that PAC-Bayes flatness-based and path norm-based measures produce the most
consistent explanation for the combination of models and data. We also
investigate the use of multi-task classification and segmentation approach for
breast images, and report that such learning approach acts as an implicit
regularizer and is conducive toward improved generalization.
- Abstract(参考訳): 医用画像解析のためのディープラーニングモデルの一般化性能は、データ取得、デバイス設定、患者集団のための異なるデバイスで収集された画像に対して低下することが多い。
新しい画像に対する一般化能力の理解が深層学習における臨床医の信頼性に不可欠である。
近年,一般化限界と複雑性尺度の確立に向けた研究が盛んに行われているが,予測と実際の一般化性能との間には大きな差があることが多い。
同様に、関連する大規模な実証研究は、主に汎用画像データセットによる検証に基づいている。
本稿では,乳房超音波画像における25種類の複雑性尺度と教師付き深層学習分類器の一般化能力の相関について検討する。
その結果,PAC-Bayes平坦度とパスノルムに基づく尺度は,モデルとデータの組み合わせに対して最も一貫した説明をもたらすことがわかった。
また,乳房画像に対するマルチタスク分類とセグメンテーション手法の利用について検討し,これらの学習手法が暗黙の正規化として機能し,一般化の促進に寄与することを示す。
関連論文リスト
- Harmonized Spatial and Spectral Learning for Robust and Generalized Medical Image Segmentation [5.3590650005818254]
我々は、中級特徴と文脈的長距離依存を捉えるためのモデル能力を改善するために、革新的なスペクトル相関係数の目的を導入する。
実験によると、UNetやTransUNetのような既存のアーキテクチャでこの目的を最適化することで、一般化、解釈可能性、ノイズの堅牢性が大幅に向上する。
論文 参考訳(メタデータ) (2024-01-18T20:43:43Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Validation and Generalizability of Self-Supervised Image Reconstruction
Methods for Undersampled MRI [4.832984894979636]
自己教師型認知とニューラルネットワーク画像を用いた2つの自己教師型アルゴリズムについて検討した。
それらの一般化性は、トレーニングとは異なる実験条件から、前向きにアンダーサンプリングされたデータでテストされた。
論文 参考訳(メタデータ) (2022-01-29T09:06:04Z) - Deep Relational Metric Learning [84.95793654872399]
本稿では,画像クラスタリングと検索のためのディープリレーショナルメトリック学習フレームワークを提案する。
我々は、クラス間分布とクラス内分布の両方をモデル化するために、異なる側面から画像を特徴付ける特徴のアンサンブルを学ぶ。
広く使われているCUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、我々のフレームワークが既存の深層学習方法を改善し、非常に競争力のある結果をもたらすことを示した。
論文 参考訳(メタデータ) (2021-08-23T09:31:18Z) - Transductive image segmentation: Self-training and effect of uncertainty
estimation [16.609998086075127]
半教師付き学習(SSL)は、トレーニング中にラベルのないデータを使用して、より良いモデルを学ぶ。
本研究は、一般化を改善するのではなく、訓練中の最適化に含める際に、未ラベルデータに基づく予測の質に焦点をあてる。
外傷性脳病変のマルチクラスセグメンテーションのための大規模なMRIデータベースを用いた実験は,インダクティブ予測とトランスダクティブ予測との比較において有望な結果を示した。
論文 参考訳(メタデータ) (2021-07-19T15:26:07Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
多様な取得条件のデータを共通参照領域に"調和"する新しいパラダイムを提案する。
我々は,MRIによる脳年齢予測と統合失調症の分類という,2つの問題に対して本手法を検証した。
論文 参考訳(メタデータ) (2020-10-11T22:01:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。