論文の概要: Improving the generalization of deep learning models in the segmentation of mammography images
- arxiv url: http://arxiv.org/abs/2503.22052v1
- Date: Fri, 28 Mar 2025 00:11:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:31:27.236802
- Title: Improving the generalization of deep learning models in the segmentation of mammography images
- Title(参考訳): マンモグラフィ画像のセグメンテーションにおけるディープラーニングモデルの一般化の改善
- Authors: Jan Hurtado, Joao P. Maia, Cesar A. Sierra-Franco, Alberto Raposo,
- Abstract要約: マンモグラフィー画像におけるランドマーク構造のセグメンテーションは、がんリスクの評価における医療評価に役立つ。
深層学習に基づくセグメンテーションのためのトレーニングデータ強化を目的とした,データ中心型戦略のシリーズを紹介する。
提案手法では,アノテーションによる画像強度操作とスタイル転送によりトレーニングサンプルを増強する。
- 参考スコア(独自算出の注目度): 0.33748750222488655
- License:
- Abstract: Mammography stands as the main screening method for detecting breast cancer early, enhancing treatment success rates. The segmentation of landmark structures in mammography images can aid the medical assessment in the evaluation of cancer risk and the image acquisition adequacy. We introduce a series of data-centric strategies aimed at enriching the training data for deep learning-based segmentation of landmark structures. Our approach involves augmenting the training samples through annotation-guided image intensity manipulation and style transfer to achieve better generalization than standard training procedures. These augmentations are applied in a balanced manner to ensure the model learns to process a diverse range of images generated by different vendor equipments while retaining its efficacy on the original data. We present extensive numerical and visual results that demonstrate the superior generalization capabilities of our methods when compared to the standard training. For this evaluation, we consider a large dataset that includes mammography images generated by different vendor equipments. Further, we present complementary results that show both the strengths and limitations of our methods across various scenarios. The accuracy and robustness demonstrated in the experiments suggest that our method is well-suited for integration into clinical practice.
- Abstract(参考訳): マンモグラフィーは、乳がんを早期に検出し、治療成功率を高めるための主要なスクリーニング方法である。
マンモグラフィー画像におけるランドマーク構造のセグメンテーションは、がんリスクと画像取得精度の評価における医療評価に役立つ。
ランドマーク構造の深層学習に基づくセグメンテーションのためのトレーニングデータ強化を目的とした,データ中心型戦略のシリーズを紹介する。
提案手法では,アノテーションによる画像強度操作とスタイル転送によってトレーニングサンプルを増強し,標準的なトレーニング手順よりも優れた一般化を実現する。
これらの拡張は、モデルが異なるベンダー機器によって生成された多様な画像を処理することを学習し、元のデータにその有効性を保ちながら、バランスよく適用される。
本研究は,本手法の標準訓練と比較して,優れた一般化能力を示す広範囲な数値的および視覚的結果を示す。
本評価では,異なるベンダー機器が生成するマンモグラフィー画像を含む大規模なデータセットについて検討する。
さらに,様々なシナリオにまたがる手法の長所と短所を示す相補的な結果を示す。
実験で示された精度と堅牢性は,本手法が臨床実習への統合に適していることを示唆している。
関連論文リスト
- Boosting Few-Shot Learning with Disentangled Self-Supervised Learning and Meta-Learning for Medical Image Classification [8.975676404678374]
低データ体制下で訓練されたモデルの性能と一般化能力を改善するための戦略を提案する。
提案手法は、自己教師付き学習環境において学習した特徴をアンタングル化して、下流タスクの表現の堅牢性を向上する事前学習段階から開始する。
次に、メタファインニングのステップを導入し、メタトレーニングとメタテストフェーズの関連クラスを活用するが、レベルは変化する。
論文 参考訳(メタデータ) (2024-03-26T09:36:20Z) - Sam-Guided Enhanced Fine-Grained Encoding with Mixed Semantic Learning
for Medical Image Captioning [12.10183458424711]
本稿では, セグメンション・アプライス・モデル (SAM) でガイドされた新しい医用画像キャプション法について述べる。
本手法では, 医用画像の総合的情報と細部を同時に捉えるために, セマンティック学習を併用した独特な事前学習戦略を採用している。
論文 参考訳(メタデータ) (2023-11-02T05:44:13Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Self-supervised Learning from 100 Million Medical Images [13.958840691105992]
コントラスト学習とオンライン特徴クラスタリングに基づく,リッチな画像特徴の自己教師付き学習手法を提案する。
我々は,X線撮影,CT,MRI,超音波など,様々なモードの医療画像10万枚を超える大規模なトレーニングデータセットを活用している。
本稿では,X線撮影,CT,MRにおける画像評価の課題に対して,この戦略の多くの利点を強調した。
論文 参考訳(メタデータ) (2022-01-04T18:27:04Z) - Domain Generalization for Mammography Detection via Multi-style and
Multi-view Contrastive Learning [47.30824944649112]
限られたリソースを持つ様々なベンダーに対して,ディープラーニングモデルの一般化能力を高めるために,新しいコントラスト学習手法を開発した。
バックボーンネットワークは、さまざまなベンダースタイルに不変機能を組み込むために、マルチスタイルでマルチビューで教師なしの自己学習スキームで訓練されている。
実験結果から,本手法は目視領域と目視領域の両方における検出性能を効果的に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2021-11-21T14:29:50Z) - Evaluation of Complexity Measures for Deep Learning Generalization in
Medical Image Analysis [77.34726150561087]
PAC-ベイズ平坦度とパスノルムに基づく測度は、モデルとデータの組み合わせについて最も一貫した説明をもたらす。
また,乳房画像に対するマルチタスク分類とセグメンテーションのアプローチについても検討した。
論文 参考訳(メタデータ) (2021-03-04T20:58:22Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
多様な取得条件のデータを共通参照領域に"調和"する新しいパラダイムを提案する。
我々は,MRIによる脳年齢予測と統合失調症の分類という,2つの問題に対して本手法を検証した。
論文 参考訳(メタデータ) (2020-10-11T22:01:37Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。