論文の概要: Syntactic and Semantic-driven Learning for Open Information Extraction
- arxiv url: http://arxiv.org/abs/2103.03448v1
- Date: Fri, 5 Mar 2021 02:59:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-08 14:53:48.007969
- Title: Syntactic and Semantic-driven Learning for Open Information Extraction
- Title(参考訳): オープン情報抽出のための構文とセマンティック駆動学習
- Authors: Jialong Tang, Yaojie Lu, Hongyu Lin, Xianpei Han, Le Sun, Xinyan Xiao,
Hua Wu
- Abstract要約: 正確で高カバレッジのニューラルオープンIEシステムを構築する上で最大のボトルネックの1つは、大きなラベル付きコーパスの必要性である。
そこで本研究では,人間に反するデータを使わずにオープンなIEモデルを学習するシンタクティクスとセマンティック駆動型学習手法を提案する。
- 参考スコア(独自算出の注目度): 42.65591370263333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the biggest bottlenecks in building accurate, high coverage neural
open IE systems is the need for large labelled corpora. The diversity of open
domain corpora and the variety of natural language expressions further
exacerbate this problem. In this paper, we propose a syntactic and
semantic-driven learning approach, which can learn neural open IE models
without any human-labelled data by leveraging syntactic and semantic knowledge
as noisier, higher-level supervisions. Specifically, we first employ syntactic
patterns as data labelling functions and pretrain a base model using the
generated labels. Then we propose a syntactic and semantic-driven reinforcement
learning algorithm, which can effectively generalize the base model to open
situations with high accuracy. Experimental results show that our approach
significantly outperforms the supervised counterparts, and can even achieve
competitive performance to supervised state-of-the-art (SoA) model
- Abstract(参考訳): 正確で高カバレッジのニューラルオープンIEシステムを構築する上で最大のボトルネックの1つは、大きなラベル付きコーパスの必要性である。
オープンドメインコーポラの多様性と自然言語表現の多様性は、この問題をさらに悪化させます。
本論文では,構文とセマンティックの知識を,よりノイズの多い高レベルな監督として活用することで,人間に反するデータを持たないオープンなIEモデルを学習できるシンタクティクスとセマンティック駆動の学習手法を提案する。
具体的には,まずデータラベリング関数として構文パターンを用い,生成されたラベルを用いてベースモデルを事前学習する。
そこで本研究では,ベースモデルを高い精度でオープン状況に効果的に一般化できる構文的・意味的強化学習アルゴリズムを提案する。
実験結果から,我々のアプローチは,監視対象のアプローチを大幅に上回り,監視対象の最新モデル(SoA)に対する競争力さえ達成できることが示された。
関連論文リスト
- Synergizing Unsupervised and Supervised Learning: A Hybrid Approach for Accurate Natural Language Task Modeling [0.0]
本稿では,NLPタスクモデリングの精度を向上させるために,教師なし学習と教師なし学習を相乗化する新しいハイブリッド手法を提案する。
提案手法は,未ラベルコーパスから表現を学習する教師なしモジュールと,これらの表現を活用してタスク固有モデルを強化する教師付きモジュールを統合する。
手法の相乗化により、我々のハイブリッドアプローチはベンチマークデータセット上でSOTAの結果を達成し、よりデータ効率が高くロバストなNLPシステムを実現する。
論文 参考訳(メタデータ) (2024-06-03T08:31:35Z) - Data Science Principles for Interpretable and Explainable AI [0.7581664835990121]
解釈可能でインタラクティブな機械学習は、複雑なモデルをより透明で制御しやすいものにすることを目的としている。
本論は, この分野における文献の発達から重要な原則を合成するものである。
論文 参考訳(メタデータ) (2024-05-17T05:32:27Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
一般的に使われているユーザトークンモデルは、より複雑なモデルよりも一貫して優れています。
以上の結果から,コーパス統計とアノテータモデリング性能の関係が明らかになった。
論文 参考訳(メタデータ) (2024-04-02T22:27:24Z) - Syntactic Multi-view Learning for Open Information Extraction [26.1066324477346]
Open Information extract (OpenIE) は、オープンドメインの文から抽出することを目的としている。
本稿では,単語レベルのグラフに構成木と依存性木の両方をモデル化する。
論文 参考訳(メタデータ) (2022-12-05T07:15:41Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z) - Convex Polytope Modelling for Unsupervised Derivation of Semantic
Structure for Data-efficient Natural Language Understanding [31.888489552069146]
Convex-Polytopic-Modelベースのフレームワークは、生のダイアログコーパスを利用して意味パターンを自動的に抽出する大きな可能性を示している。
このフレームワークは,コーパスのセマンティックフレーム関連機能を活用し,発話の基盤となるセマンティック構造を明らかにし,最小限の監視で最先端のNLUモデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-01-25T19:12:44Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
我々は,膨大なマルチモーダル(視覚的・テキスト的)データを事前学習した新しい基礎モデルを開発する。
そこで本研究では,様々な下流タスクにおいて,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T12:25:21Z) - Distantly-Supervised Named Entity Recognition with Noise-Robust Learning
and Language Model Augmented Self-Training [66.80558875393565]
遠距離ラベル付きデータのみを用いて、名前付きエンティティ認識(NER)モデルを訓練する際の課題について検討する。
本稿では,新しい損失関数と雑音ラベル除去ステップからなるノイズロスバスト学習手法を提案する。
提案手法は,既存の遠隔教師付きNERモデルよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2021-09-10T17:19:56Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。