論文の概要: Convex Polytope Modelling for Unsupervised Derivation of Semantic
Structure for Data-efficient Natural Language Understanding
- arxiv url: http://arxiv.org/abs/2201.10588v1
- Date: Tue, 25 Jan 2022 19:12:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-27 13:25:14.844360
- Title: Convex Polytope Modelling for Unsupervised Derivation of Semantic
Structure for Data-efficient Natural Language Understanding
- Title(参考訳): データ効率のよい自然言語理解のための意味構造の教師なし導出のための凸ポリトープモデリング
- Authors: Jingyan Zhou, Xiaohan Feng, King Keung Wu, Helen Meng
- Abstract要約: Convex-Polytopic-Modelベースのフレームワークは、生のダイアログコーパスを利用して意味パターンを自動的に抽出する大きな可能性を示している。
このフレームワークは,コーパスのセマンティックフレーム関連機能を活用し,発話の基盤となるセマンティック構造を明らかにし,最小限の監視で最先端のNLUモデルの性能を向上させることができることを示す。
- 参考スコア(独自算出の注目度): 31.888489552069146
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Popular approaches for Natural Language Understanding (NLU) usually rely on a
huge amount of annotated data or handcrafted rules, which is laborious and not
adaptive to domain extension. We recently proposed a
Convex-Polytopic-Model-based framework that shows great potential in
automatically extracting semantic patterns by exploiting the raw dialog corpus.
The extracted semantic patterns can be used to generate semantic frames, which
is essential in assisting NLU tasks. This paper further studies the CPM model
in depth and visualizes its high interpretability and transparency at various
levels. We show that this framework can exploit
semantic-frame-related features in the corpus, reveal the underlying semantic
structure of the utterances, and boost the performance of the state-of-the-art
NLU model with minimal supervision. We conduct our experiments on the ATIS (Air
Travel Information System) corpus.
- Abstract(参考訳): 自然言語理解(NLU)の一般的なアプローチは、通常大量の注釈付きデータや手作りルールに依存しており、ドメイン拡張には適応しない。
我々は最近、生のダイアログコーパスを利用して意味パターンを自動的に抽出する可能性を示すConvex-Polytopic-Modelベースのフレームワークを提案する。
抽出したセマンティックパターンは、NLUタスクを支援するために必須のセマンティックフレームを生成するために使用できる。
本稿では,CPMモデルをさらに深く研究し,その高い解釈性と透明性を様々なレベルで可視化する。
このフレームワークは,コーパスのセマンティックフレーム関連機能を活用し,発話の基盤となるセマンティック構造を明らかにし,最小限の監視で最先端のNLUモデルの性能を向上させることができることを示す。
我々はATISコーパス(Air Travel Information System)の実験を行った。
関連論文リスト
- Deep Sparse Latent Feature Models for Knowledge Graph Completion [24.342670268545085]
本稿では,知識グラフのためのスパース潜在特徴モデルの新たなフレームワークを提案する。
我々のアプローチは、欠落した三重項を効果的に完成するだけでなく、潜伏構造の明確な解釈可能性も提供する。
提案手法は,潜在コミュニティを明らかにし,解釈可能な表現を生成することにより,性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-11-24T03:17:37Z) - HIP: Hierarchical Point Modeling and Pre-training for Visual Information Extraction [24.46493675079128]
OCRに依存した手法はオフラインのOCRエンジンに依存し、OCRに依存しない手法は解釈性に欠ける出力や幻覚的内容を含む出力を生成する。
我々は, 階層的視点をモデルとしたHIPを提案し, エンドツーエンドのVIEタスクの階層的性質をよりよく適合させる。
具体的には、このような階層的な点は柔軟に符号化され、その後所望のテキスト書き起こし、地域の中心、エンティティのカテゴリにデコードされる。
論文 参考訳(メタデータ) (2024-11-02T05:00:13Z) - Learning Hierarchical Prompt with Structured Linguistic Knowledge for
Vision-Language Models [43.56153167864033]
大規模言語モデル(LLM)における構造化知識を活用する新しい手法を提案する。
低レベルの即時学習のためのエンティティと属性間のペアワイズ関連をキャプチャする、関係誘導型アテンションモジュールを導入する。
さらに、高レベルのプロンプトとグローバルレベルのプロンプトを組み込むことで、提案された階層構造は、クロスレベルのインターリンクを偽造し、より複雑で長期的な関係を扱うようにモデルに権限を与える。
論文 参考訳(メタデータ) (2023-12-11T12:14:06Z) - Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling [0.0]
事前訓練された言語モデルにおけるディープニューラルネットワークのブラックボックス構造は、言語モデリングプロセスの解釈可能性を大幅に制限する。
解釈不能なニューラル表現と解釈不能な統計論理のアライメント処理を導入することで,ワードコンテキスト結合空間(W2CSpace)を提案する。
我々の言語モデルは,関連する最先端手法と比較して,優れた性能と信頼性の高い解釈能力を実現することができる。
論文 参考訳(メタデータ) (2023-05-19T09:26:02Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
本稿では, PLM を用いた自己回帰的手法を用いて, モデル構造を行動列として記述する。
我々のアプローチは、私たちが見てきた全ての構造化予測タスクにおいて、新しい最先端を実現する。
論文 参考訳(メタデータ) (2022-10-26T13:27:26Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
本稿では,既存の事前学習言語モデルを階層型デコーダネットワークに組み込むことを提案する。
第一原理構造をセマンティックアンカーとすることで、2つの新しい中間管理タスクを提案する。
いくつかのセマンティック解析ベンチマークで集中的な実験を行い、我々のアプローチがベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2022-10-04T07:27:29Z) - Nested Named Entity Recognition as Holistic Structure Parsing [92.8397338250383]
本研究は,文中の全入れ子NEを全体構造としてモデル化し,全体構造解析アルゴリズムを提案する。
実験により、我々のモデルは、最先端にアプローチしたり、あるいは達成したりするような、広く使われているベンチマークで有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2022-04-17T12:48:20Z) - Syntactic and Semantic-driven Learning for Open Information Extraction [42.65591370263333]
正確で高カバレッジのニューラルオープンIEシステムを構築する上で最大のボトルネックの1つは、大きなラベル付きコーパスの必要性である。
そこで本研究では,人間に反するデータを使わずにオープンなIEモデルを学習するシンタクティクスとセマンティック駆動型学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-05T02:59:40Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。