Syntactic and Semantic-driven Learning for Open Information Extraction
- URL: http://arxiv.org/abs/2103.03448v1
- Date: Fri, 5 Mar 2021 02:59:40 GMT
- Title: Syntactic and Semantic-driven Learning for Open Information Extraction
- Authors: Jialong Tang, Yaojie Lu, Hongyu Lin, Xianpei Han, Le Sun, Xinyan Xiao,
Hua Wu
- Abstract summary: One of the biggest bottlenecks in building accurate, high coverage neural open IE systems is the need for large labelled corpora.
We propose a syntactic and semantic-driven learning approach, which can learn neural open IE models without any human-labelled data.
- Score: 42.65591370263333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the biggest bottlenecks in building accurate, high coverage neural
open IE systems is the need for large labelled corpora. The diversity of open
domain corpora and the variety of natural language expressions further
exacerbate this problem. In this paper, we propose a syntactic and
semantic-driven learning approach, which can learn neural open IE models
without any human-labelled data by leveraging syntactic and semantic knowledge
as noisier, higher-level supervisions. Specifically, we first employ syntactic
patterns as data labelling functions and pretrain a base model using the
generated labels. Then we propose a syntactic and semantic-driven reinforcement
learning algorithm, which can effectively generalize the base model to open
situations with high accuracy. Experimental results show that our approach
significantly outperforms the supervised counterparts, and can even achieve
competitive performance to supervised state-of-the-art (SoA) model
Related papers
- Synergizing Unsupervised and Supervised Learning: A Hybrid Approach for Accurate Natural Language Task Modeling [0.0]
This paper presents a novel hybrid approach that synergizes unsupervised and supervised learning to improve the accuracy of NLP task modeling.
Our methodology integrates an unsupervised module that learns representations from unlabeled corpora and a supervised module that leverages these representations to enhance task-specific models.
By synergizing techniques, our hybrid approach achieves SOTA results on benchmark datasets, paving the way for more data-efficient and robust NLP systems.
arXiv Detail & Related papers (2024-06-03T08:31:35Z) - Data Science Principles for Interpretable and Explainable AI [0.7581664835990121]
Interpretable and interactive machine learning aims to make complex models more transparent and controllable.
This review synthesizes key principles from the growing literature in this field.
arXiv Detail & Related papers (2024-05-17T05:32:27Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - Syntactic Multi-view Learning for Open Information Extraction [26.1066324477346]
Open Information Extraction (OpenIE) aims to extracts from open-domain sentences.
In this paper, we model both constituency and dependency trees into word-level graphs.
arXiv Detail & Related papers (2022-12-05T07:15:41Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
We propose a retrieval-augmented approach, which retrieves schema-aware Reference As Prompt (RAP) for data-efficient knowledge graph construction.
RAP can dynamically leverage schema and knowledge inherited from human-annotated and weak-supervised data as a prompt for each sample.
arXiv Detail & Related papers (2022-10-19T16:40:28Z) - Convex Polytope Modelling for Unsupervised Derivation of Semantic
Structure for Data-efficient Natural Language Understanding [31.888489552069146]
A Convex-Polytopic-Model-based framework shows great potential in automatically extracting semantic patterns by exploiting the raw dialog corpus.
We show that this framework can exploit semantic-frame-related features in the corpus, reveal the underlying semantic structure of the utterances, and boost the performance of the state-of-the-art NLU model with minimal supervision.
arXiv Detail & Related papers (2022-01-25T19:12:44Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z) - Distantly-Supervised Named Entity Recognition with Noise-Robust Learning
and Language Model Augmented Self-Training [66.80558875393565]
We study the problem of training named entity recognition (NER) models using only distantly-labeled data.
We propose a noise-robust learning scheme comprised of a new loss function and a noisy label removal step.
Our method achieves superior performance, outperforming existing distantly-supervised NER models by significant margins.
arXiv Detail & Related papers (2021-09-10T17:19:56Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.