Distantly-Supervised Named Entity Recognition with Noise-Robust Learning
and Language Model Augmented Self-Training
- URL: http://arxiv.org/abs/2109.05003v1
- Date: Fri, 10 Sep 2021 17:19:56 GMT
- Title: Distantly-Supervised Named Entity Recognition with Noise-Robust Learning
and Language Model Augmented Self-Training
- Authors: Yu Meng, Yunyi Zhang, Jiaxin Huang, Xuan Wang, Yu Zhang, Heng Ji,
Jiawei Han
- Abstract summary: We study the problem of training named entity recognition (NER) models using only distantly-labeled data.
We propose a noise-robust learning scheme comprised of a new loss function and a noisy label removal step.
Our method achieves superior performance, outperforming existing distantly-supervised NER models by significant margins.
- Score: 66.80558875393565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of training named entity recognition (NER) models using
only distantly-labeled data, which can be automatically obtained by matching
entity mentions in the raw text with entity types in a knowledge base. The
biggest challenge of distantly-supervised NER is that the distant supervision
may induce incomplete and noisy labels, rendering the straightforward
application of supervised learning ineffective. In this paper, we propose (1) a
noise-robust learning scheme comprised of a new loss function and a noisy label
removal step, for training NER models on distantly-labeled data, and (2) a
self-training method that uses contextualized augmentations created by
pre-trained language models to improve the generalization ability of the NER
model. On three benchmark datasets, our method achieves superior performance,
outperforming existing distantly-supervised NER models by significant margins.
Related papers
- Incremental Self-training for Semi-supervised Learning [56.57057576885672]
IST is simple yet effective and fits existing self-training-based semi-supervised learning methods.
We verify the proposed IST on five datasets and two types of backbone, effectively improving the recognition accuracy and learning speed.
arXiv Detail & Related papers (2024-04-14T05:02:00Z) - SCANNER: Knowledge-Enhanced Approach for Robust Multi-modal Named Entity Recognition of Unseen Entities [10.193908215351497]
We propose SCANNER, a model capable of effectively handling all three NER variants.
SCANNER is a two-stage structure; we extract entity candidates in the first stage and use it as a query to get knowledge.
To tackle the challenges arising from noisy annotations in NER datasets, we introduce a novel self-distillation method.
arXiv Detail & Related papers (2024-04-02T13:05:41Z) - Improving a Named Entity Recognizer Trained on Noisy Data with a Few
Clean Instances [55.37242480995541]
We propose to denoise noisy NER data with guidance from a small set of clean instances.
Along with the main NER model we train a discriminator model and use its outputs to recalibrate the sample weights.
Results on public crowdsourcing and distant supervision datasets show that the proposed method can consistently improve performance with a small guidance set.
arXiv Detail & Related papers (2023-10-25T17:23:37Z) - RockNER: A Simple Method to Create Adversarial Examples for Evaluating
the Robustness of Named Entity Recognition Models [32.806292167848156]
We propose RockNER to audit the robustness of named entity recognition models.
We replace target entities with other entities of the same semantic class in Wikidata.
At the context level, we use pre-trained language models to generate word substitutions.
arXiv Detail & Related papers (2021-09-12T21:30:21Z) - AutoTriggER: Label-Efficient and Robust Named Entity Recognition with
Auxiliary Trigger Extraction [54.20039200180071]
We present a novel framework to improve NER performance by automatically generating and leveraging entity triggers''
Our framework leverages post-hoc explanation to generate rationales and strengthens a model's prior knowledge using an embedding technique.
AutoTriggER shows strong label-efficiency, is capable of generalizing to unseen entities, and outperforms the RoBERTa-CRF baseline by nearly 0.5 F1 points on average.
arXiv Detail & Related papers (2021-09-10T08:11:56Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Coarse-to-Fine Pre-training for Named Entity Recognition [26.00489191164784]
We propose a NER-specific pre-training framework to in-ject coarse-to-fine automatically mined entityknowledge into pre-trained models.
Our framework achieves significant improvements against several pre-trained base-lines, establishing the new state-of-the-art per-formance on three benchmarks.
arXiv Detail & Related papers (2020-10-16T07:39:20Z) - BOND: BERT-Assisted Open-Domain Named Entity Recognition with Distant
Supervision [49.42215511723874]
We propose a new computational framework -- BOND -- to improve the prediction performance of NER models.
Specifically, we propose a two-stage training algorithm: In the first stage, we adapt the pre-trained language model to the NER tasks using the distant labels.
In the second stage, we drop the distant labels, and propose a self-training approach to further improve the model performance.
arXiv Detail & Related papers (2020-06-28T04:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.