Optomechanical cooling with coherent and squeezed light: the
thermodynamic cost of opening the heat valve
- URL: http://arxiv.org/abs/2103.03596v2
- Date: Tue, 18 May 2021 12:26:20 GMT
- Title: Optomechanical cooling with coherent and squeezed light: the
thermodynamic cost of opening the heat valve
- Authors: Juliette Monsel, Nastaran Dashti, Sushanth Kini Manjeshwar, Jakob
Eriksson, Henric Ernbrink, Ebba Olsson, Emelie Torneus, Witlef Wieczorek and
Janine Splettstoesser
- Abstract summary: Ground-state cooling of mechanical motion by coupling to a driven optical cavity has been demonstrated in various optomechanical systems.
We provide a so far missing thermodynamic performance analysis of optomechanical sideband cooling in terms of a heat valve.
- Score: 0.12647816797166164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ground-state cooling of mechanical motion by coupling to a driven optical
cavity has been demonstrated in various optomechanical systems. In our work, we
provide a so far missing thermodynamic performance analysis of optomechanical
sideband cooling in terms of a heat valve. As performance quantifiers, we
examine not only the lowest reachable effective temperature (phonon number) but
also the evacuated-heat flow as an equivalent to the cooling power of a
standard refrigerator, as well as appropriate thermodynamic efficiencies, which
all can be experimentally inferred from measurements of the cavity output light
field. Importantly, in addition to the standard optomechanical setup fed by
coherent light, we investigate two recent alternative setups for achieving
ground-state cooling: replacing the coherent laser drive by squeezed light or
using a cavity with a frequency-dependent (Fano) mirror. We study the dynamics
of these setups within and beyond the weak-coupling limit and give concrete
examples based on parameters of existing experimental systems. By applying our
thermodynamic framework, we gain detailed insights into these three different
optomechanical cooling setups, allowing a comprehensive understanding of the
thermodynamic mechanisms at play.
Related papers
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Thermodynamics of hybrid quantum rotor devices [0.0]
We investigate the thermodynamics of a hybrid quantum device consisting of two qubits collectively interacting with a quantum rotor.
We identify the functioning of the device as a thermal engine, a refrigerator or an accelerator.
arXiv Detail & Related papers (2023-04-17T10:00:14Z) - Active-feedback quantum control of an integrated low-frequency
mechanical resonator [0.0]
optomechanical device fabricated using a pick-and-place method, operating in the deep sideband-unresolved limit.
We achieve a minimal average phonon occupation of 0.76 when pre-cooled with liquid helium and 3.5 with liquid nitrogen.
Our method and device are ideally suited for sensing applications directly operating at the quantum limit.
arXiv Detail & Related papers (2023-04-06T00:26:38Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Heat transport and cooling performance in a nanomechanical system with
local and non local interactions [68.8204255655161]
We study heat transport through a one dimensional time-dependent nanomechanical system.
The system presents different stationary transport regimes depending on the driving frequency, temperature gradients and the degree of locality of the interactions.
arXiv Detail & Related papers (2022-02-21T12:03:54Z) - Geometric Heat Pump: Controlling Thermal Transport with Time-dependent
Modulations [21.544545839943446]
We review the emergence and development of this so called geometric heat pump''
The generalization from the adiabatic to the non-adiabatic regime and the application of control theory are also discussed.
arXiv Detail & Related papers (2021-06-25T14:24:42Z) - Quantum control of solid-state qubits for thermodynamic applications [0.0]
We consider a single emitter of excitons driven by time-dependent laser fields.
We show that the form of the driving field can be tailored to produce different thermodynamic processes.
We discuss these effects from the perspective of quantum thermodynamics and outline the possibility of using them for optical cooling of solids to low temperatures.
arXiv Detail & Related papers (2021-03-24T11:17:24Z) - Maximal power for heat engines: role of asymmetric interaction times [110.83289076967895]
We introduce the idea of adjusting the interaction time asymmetry in order to optimize the engine performance.
Distinct optimization protocols are analyzed in the framework of thermodynamics.
arXiv Detail & Related papers (2020-12-16T22:26:14Z) - Ground-state cooling of mechanical resonators by quantum reservoir
engineering [0.0]
We propose a scheme to cool down a mechanical resonator to its quantum ground-state.
We consider an incoherent thermal source to achieve the same aim.
We show that simultaneous cooling of two or near-degenerate mechanical resonators is possible.
arXiv Detail & Related papers (2020-11-18T19:59:04Z) - Optomechanical Stirling heat engine driven by feedback-controlled light [0.0]
We propose and analyze a microscopic Stirling heat engine based on an optomechanical system.
The working fluid is a single vibrational mode of a mechanical resonator, which interacts by radiation pressure with a feedback-controlled optical cavity.
arXiv Detail & Related papers (2020-06-25T18:47:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.