Thermodynamics of hybrid quantum rotor devices
- URL: http://arxiv.org/abs/2304.08122v2
- Date: Tue, 13 Feb 2024 17:09:46 GMT
- Title: Thermodynamics of hybrid quantum rotor devices
- Authors: Heather Leitch, Kenza Hammam, Gabriele De Chiara
- Abstract summary: We investigate the thermodynamics of a hybrid quantum device consisting of two qubits collectively interacting with a quantum rotor.
We identify the functioning of the device as a thermal engine, a refrigerator or an accelerator.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the thermodynamics of a hybrid quantum device consisting of
two qubits collectively interacting with a quantum rotor and coupled
dissipatively to two equilibrium reservoirs at different temperatures. By
modelling the dynamics and the resulting steady state of the system using a
collision model, we identify the functioning of the device as a thermal engine,
a refrigerator or an accelerator. In addition, we also look into the device's
capacity to operate as a heat rectifier, and optimise both the rectification
coefficient and the heat flow simultaneously. Drawing an analogy to heat
rectification and since we are interested in the conversion of energy into the
rotor's kinetic energy, we introduce the concept of angular momentum
rectification which may be employed to control work extraction through an
external load.
Related papers
- Quantum field heat engine powered by phonon-photon interactions [58.720142291102135]
We present a quantum heat engine based on a cavity with two oscillating mirrors.
The engine performs an Otto cycle during which the walls and a field mode interact via a nonlinear Hamiltonian.
arXiv Detail & Related papers (2023-05-10T20:27:15Z) - Efficiency and thermodynamic uncertainty relations of a dynamical
quantum heat engine [0.0]
We show that parameters can be found such that the machine operates both as a quantum engine or refrigerator.
We show that parameters can be found such that the machine operates both as a quantum engine or refrigerator, with both sizeable efficiency and small fluctuations.
arXiv Detail & Related papers (2023-03-28T07:30:34Z) - Nonequilibrium thermodynamics and power generation in open quantum
optomechanical systems [0.0]
We present a consistent thermodynamic description of open quantum cavity-atom systems.
Our approach takes advantage of their nonequilibrium nature and arrives at an energetic balance.
We discuss power generation, energy-conversion efficiency, and emergence of metastable behavior in both limits.
arXiv Detail & Related papers (2022-12-20T12:05:43Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Exploiting coherence for quantum thermodynamic advantage [0.0]
We investigate the impact of coherence on the thermodynamic tasks of a collision model composed of a system interacting.
Our results show the advantages of utilising coherence as a resource in the operation of the machine.
We find an effective upper bound to the efficiency of the thermal machine operating as an engine in the presence of a coherent reservoir.
arXiv Detail & Related papers (2022-02-15T15:42:45Z) - Driven quantum harmonic oscillators: A working medium for thermal
machines [0.0]
We consider a working substance that is permanently coupled to two or more baths at different temperatures and continuously driven.
We derive the heat flows and power of the working device which can operate as an engine, refrigerator or accelerator.
An increased driving frequency can lead to a change of functioning to a dissipator.
arXiv Detail & Related papers (2021-08-25T16:53:45Z) - Collective effects on the performance and stability of quantum heat
engines [62.997667081978825]
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest.
One essential question is whether collective effects may help to carry enhancements over larger scales.
We study how power, efficiency and constancy scale with the number of spins composing the engine.
arXiv Detail & Related papers (2021-06-25T18:00:07Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Optomechanical cooling with coherent and squeezed light: the
thermodynamic cost of opening the heat valve [0.12647816797166164]
Ground-state cooling of mechanical motion by coupling to a driven optical cavity has been demonstrated in various optomechanical systems.
We provide a so far missing thermodynamic performance analysis of optomechanical sideband cooling in terms of a heat valve.
arXiv Detail & Related papers (2021-03-05T11:04:24Z) - Maximal power for heat engines: role of asymmetric interaction times [110.83289076967895]
We introduce the idea of adjusting the interaction time asymmetry in order to optimize the engine performance.
Distinct optimization protocols are analyzed in the framework of thermodynamics.
arXiv Detail & Related papers (2020-12-16T22:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.