Dissipation and non-thermal states in cryogenic cavities
- URL: http://arxiv.org/abs/2504.00591v2
- Date: Thu, 10 Apr 2025 08:50:54 GMT
- Title: Dissipation and non-thermal states in cryogenic cavities
- Authors: Zeno Bacciconi, Giulia Piccitto, Alessandro Maria Verga, Giuseppe Falci, Elisabetta Paladino, Giuliano Chiriacò,
- Abstract summary: We study the properties of photons in a cryogenic cavity, made by cryo-cooled mirrors surrounded by a room temperature environment.<n>Using a Lindblad master equation approach, we derive the photon distribution and the statistical properties of the cavity modes.
- Score: 37.69303106863453
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We study the properties of photons in a cryogenic cavity, made by cryo-cooled mirrors surrounded by a room temperature environment. We model such a system as a multimode cavity coupled to two thermal reservoirs at different temperatures. Using a Lindblad master equation approach, we derive the photon distribution and the statistical properties of the cavity modes, finding an overall non-thermal state described by a mode-dependent effective temperature. We also calculate the dissipation rates arising from the interaction of the cavity field with the external environment and the mirrors, relating such rates to measurable macroscopic quantities. These results provide a simple theory to calculate the dissipative properties and the effective temperature of a cavity coupled to different thermal reservoirs, offering potential pathways for engineering dissipations and photon statistics in cavity settings.
Related papers
- Analytic solution to the nonlinear generation of squeezed states in a thermal bath [0.0]
We show that the exact solution is a squeezed thermal state, where thermal photons arise both from loss and from the thermal bath.
We apply this solution under different pump conditions and show in detail how the thermal environment reduces quadrature squeezing.
arXiv Detail & Related papers (2024-06-26T18:57:13Z) - Quantum thermodynamics of driven-dissipative condensates [0.0]
Polariton condensates occur away from thermal equilibrium, in an open system where heat and particles are continually exchanged with reservoirs.
We construct a few-level model that captures the main processes involved in the buildup of a ground-state population of polaritons.
This allows condensation to be understood as the output of a thermal machine and exposes the thermodynamic constraints on its occurrence.
arXiv Detail & Related papers (2024-03-11T16:13:58Z) - Quantum Otto engine with quantum correlations [3.740507726022551]
We investigate a photo-Otto engine that is working with a single-mode radiation field inside an optical cavity and driven by a hot and a cold reservoir.
We show that quantum discord boosts the performance and efficiency of the quantum engine, and even may change the operation mode.
arXiv Detail & Related papers (2022-11-23T02:56:10Z) - Heat transport and rectification via quantum statistical and coherence
asymmetries [0.0]
We show that heat rectification is possible even with symmetric medium-bath couplings if the two baths differ in quantum statistics or coherence.
Our results can be significant for heat management in hybrid open quantum systems or solid-state thermal circuits.
arXiv Detail & Related papers (2022-04-14T15:59:03Z) - Heat transport and cooling performance in a nanomechanical system with
local and non local interactions [68.8204255655161]
We study heat transport through a one dimensional time-dependent nanomechanical system.
The system presents different stationary transport regimes depending on the driving frequency, temperature gradients and the degree of locality of the interactions.
arXiv Detail & Related papers (2022-02-21T12:03:54Z) - Quantum collisional thermostats [0.0]
Collisional reservoirs are a major tool for modelling open quantum systems.
We present a formal solution of the problem in one dimension and for flat interaction potentials.
We then introduce two approximations of the scattering map that preserve these symmetries and, consequently, thermalize the system.
arXiv Detail & Related papers (2021-09-22T09:46:25Z) - Nonequilibrium thermal transport and photon squeezing in a quadratic
qubit-resonator system [4.81203316967207]
We investigate steady-state thermal transport and photon statistics in a nonequilibrium hybrid quantum system.
The effect of negative differential thermal conductance is unravelled at finite temperature bias.
It is found that the intrinsically asymmetric structure of the hybrid system and negative differential thermal conductance show the cooperative contribution.
arXiv Detail & Related papers (2021-07-16T02:02:25Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.