FloMo: Tractable Motion Prediction with Normalizing Flows
- URL: http://arxiv.org/abs/2103.03614v1
- Date: Fri, 5 Mar 2021 11:35:27 GMT
- Title: FloMo: Tractable Motion Prediction with Normalizing Flows
- Authors: Christoph Sch\"oller, Alois Knoll
- Abstract summary: We model motion prediction as a density estimation problem with a normalizing flow between a noise sample and the future motion distribution.
Our model, named FloMo, allows likelihoods to be computed in a single network pass and can be trained directly with maximum likelihood estimation.
Our method achieves state-of-the-art performance on three popular prediction datasets, with a significant gap to most competing models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The future motion of traffic participants is inherently uncertain. To plan
safely, therefore, an autonomous agent must take into account multiple possible
outcomes and prioritize them. Recently, this problem has been addressed with
generative neural networks. However, most generative models either do not learn
the true underlying trajectory distribution reliably, or do not allow
likelihoods to be associated with predictions. In our work, we model motion
prediction directly as a density estimation problem with a normalizing flow
between a noise sample and the future motion distribution. Our model, named
FloMo, allows likelihoods to be computed in a single network pass and can be
trained directly with maximum likelihood estimation. Furthermore, we propose a
method to stabilize training flows on trajectory datasets and a new data
augmentation transformation that improves the performance and generalization of
our model. Our method achieves state-of-the-art performance on three popular
prediction datasets, with a significant gap to most competing models.
Related papers
- Annealed Winner-Takes-All for Motion Forecasting [48.200282332176094]
We show how an aWTA loss can be integrated with state-of-the-art motion forecasting models to enhance their performance.
Our approach can be easily incorporated into any trajectory prediction model normally trained using WTA.
arXiv Detail & Related papers (2024-09-17T13:26:17Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - AdaOcc: Adaptive Forward View Transformation and Flow Modeling for 3D Occupancy and Flow Prediction [56.72301849123049]
We present our solution for the Vision-Centric 3D Occupancy and Flow Prediction track in the nuScenes Open-Occ dataset challenge at CVPR 2024.
Our innovative approach involves a dual-stage framework that enhances 3D occupancy and flow predictions by incorporating adaptive forward view transformation and flow modeling.
Our method combines regression with classification to address scale variations in different scenes, and leverages predicted flow to warp current voxel features to future frames, guided by future frame ground truth.
arXiv Detail & Related papers (2024-07-01T16:32:15Z) - Diffusion-Based Environment-Aware Trajectory Prediction [3.1406146587437904]
The ability to predict the future trajectories of traffic participants is crucial for the safe and efficient operation of autonomous vehicles.
In this paper, a diffusion-based generative model for multi-agent trajectory prediction is proposed.
The model is capable of capturing the complex interactions between traffic participants and the environment, accurately learning the multimodal nature of the data.
arXiv Detail & Related papers (2024-03-18T10:35:15Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
This paper proposes an interpretable generative model for motion prediction with robust generalizability to out-of-distribution cases.
For interpretability, the model achieves the target-driven motion prediction by estimating the spatial distribution of long-term destinations.
Experiments on motion prediction datasets validate that the fitted model can be interpretable and generalizable.
arXiv Detail & Related papers (2024-03-10T04:16:04Z) - Mixed Gaussian Flow for Diverse Trajectory Prediction [78.00204650749453]
We propose a flow-based model to transform a mixed Gaussian prior into the future trajectory manifold.
The model shows a better capacity for generating diverse trajectory patterns.
We also demonstrate that it can generate diverse, controllable, and out-of-distribution trajectories.
arXiv Detail & Related papers (2024-02-19T15:48:55Z) - GDTS: Goal-Guided Diffusion Model with Tree Sampling for Multi-Modal Pedestrian Trajectory Prediction [15.731398013255179]
We propose a novel Goal-Guided Diffusion Model with Tree Sampling for multi-modal trajectory prediction.
A two-stage tree sampling algorithm is presented, which leverages common features to reduce the inference time and improve accuracy for multi-modal prediction.
Experimental results demonstrate that our proposed framework achieves comparable state-of-the-art performance with real-time inference speed in public datasets.
arXiv Detail & Related papers (2023-11-25T03:55:06Z) - TransFusion: A Practical and Effective Transformer-based Diffusion Model
for 3D Human Motion Prediction [1.8923948104852863]
We propose TransFusion, an innovative and practical diffusion-based model for 3D human motion prediction.
Our model leverages Transformer as the backbone with long skip connections between shallow and deep layers.
In contrast to prior diffusion-based models that utilize extra modules like cross-attention and adaptive layer normalization, we treat all inputs, including conditions, as tokens to create a more lightweight model.
arXiv Detail & Related papers (2023-07-30T01:52:07Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Evaluation of Differentially Constrained Motion Models for Graph-Based
Trajectory Prediction [1.1947990549568765]
This research investigates the performance of various motion models in combination with numerical solvers for the prediction task.
The study shows that simpler models, such as low-order integrator models, are preferred over more complex, e.g., kinematic models, to achieve accurate predictions.
arXiv Detail & Related papers (2023-04-11T10:15:20Z) - Prediction-Centric Learning of Independent Cascade Dynamics from Partial
Observations [13.680949377743392]
We address the problem of learning of a spreading model such that the predictions generated from this model are accurate.
We introduce a computationally efficient algorithm, based on a scalable dynamic message-passing approach.
We show that tractable inference from the learned model generates a better prediction of marginal probabilities compared to the original model.
arXiv Detail & Related papers (2020-07-13T17:58:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.