Learning to Extend Molecular Scaffolds with Structural Motifs
- URL: http://arxiv.org/abs/2103.03864v5
- Date: Sun, 12 May 2024 12:47:40 GMT
- Title: Learning to Extend Molecular Scaffolds with Structural Motifs
- Authors: Krzysztof Maziarz, Henry Jackson-Flux, Pashmina Cameron, Finton Sirockin, Nadine Schneider, Nikolaus Stiefl, Marwin Segler, Marc Brockschmidt,
- Abstract summary: MoLeR is a graph-based model that supports scaffolds as initial seed of the generative procedure.
We show that MoLeR performs comparably to state-of-the-art methods on unconstrained molecular optimization tasks.
We also show the influence of a number of seemingly minor design choices on the overall performance.
- Score: 15.78749196233448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in deep learning-based modeling of molecules promise to accelerate in silico drug discovery. A plethora of generative models is available, building molecules either atom-by-atom and bond-by-bond or fragment-by-fragment. However, many drug discovery projects require a fixed scaffold to be present in the generated molecule, and incorporating that constraint has only recently been explored. Here, we propose MoLeR, a graph-based model that naturally supports scaffolds as initial seed of the generative procedure, which is possible because it is not conditioned on the generation history. Our experiments show that MoLeR performs comparably to state-of-the-art methods on unconstrained molecular optimization tasks, and outperforms them on scaffold-based tasks, while being an order of magnitude faster to train and sample from than existing approaches. Furthermore, we show the influence of a number of seemingly minor design choices on the overall performance.
Related papers
- Exploring Discrete Flow Matching for 3D De Novo Molecule Generation [0.0]
Flow matching is a recently proposed generative modeling framework that has achieved impressive performance on a variety of tasks.
We present FlowMol-CTMC, an open-source model that achieves state of the art performance for 3D de novo design with fewer learnable parameters than existing methods.
arXiv Detail & Related papers (2024-11-25T18:27:39Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties.
We propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution.
arXiv Detail & Related papers (2020-10-05T20:18:42Z) - Scaffold-constrained molecular generation [0.0]
We build on the well-known SMILES-based Recurrent Neural Network (RNN) generative model, with a modified sampling procedure to achieve scaffold-constrained generation.
We showcase the method's ability to perform scaffold-constrained generation on various tasks.
arXiv Detail & Related papers (2020-09-15T15:41:18Z) - Visualizing Deep Graph Generative Models for Drug Discovery [16.78530326723672]
We propose a visualization framework to visualize molecules generated during the encoding and decoding process of deep graph generative models.
Our work tries to empower black box AI driven drug discovery models with some visual interpretabilities.
arXiv Detail & Related papers (2020-07-20T18:49:10Z) - The Synthesizability of Molecules Proposed by Generative Models [3.032184156362992]
Discovery of functional molecules is an expensive and time-consuming process.
One class of techniques of growing interest for early-stage drug discovery is de novo molecular generation and optimization.
These techniques can suggest novel molecular structures intended to maximize a multi-objective function.
However, the utility of these approaches is stymied by ignorance of synthesizability.
arXiv Detail & Related papers (2020-02-17T15:41:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.