論文の概要: Deep Hedging, Generative Adversarial Networks, and Beyond
- arxiv url: http://arxiv.org/abs/2103.03913v1
- Date: Fri, 5 Mar 2021 19:41:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-09 15:09:44.815309
- Title: Deep Hedging, Generative Adversarial Networks, and Beyond
- Title(参考訳): ディープヘッジ,ジェネレーティブな敵ネットワーク,その他
- Authors: Hyunsu Kim
- Abstract要約: 本稿では,ディープラーニングと人工知能の金融応用,特にヘッジへの応用について紹介する。
本稿では,単純なバニラ欧州コールオプションを複製した直接ポリシー検索強化エージェントの枠組みを示し,モデルフリーデルタヘッジにエージェントを使用する。
我々は、このRLベースのヘッジフレームワークが、従来のモデルに固有の問題に対処し、実践的にヘッジを実行するためのより効率的な方法であると信じている。
- 参考スコア(独自算出の注目度): 2.253930064459394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a potential application of deep learning and artificial
intelligence in finance, particularly its application in hedging. The major
goal encompasses two objectives. First, we present a framework of a direct
policy search reinforcement agent replicating a simple vanilla European call
option and use the agent for the model-free delta hedging. Through the first
part of this paper, we demonstrate how the RNN-based direct policy search RL
agents can perform delta hedging better than the classic Black-Scholes model in
Q-world based on parametrically generated underlying scenarios, particularly
minimizing tail exposures at higher values of the risk aversion parameter. In
the second part of this paper, with the non-parametric paths generated by
time-series GANs from multi-variate temporal space, we illustrate its delta
hedging performance on various values of the risk aversion parameter via the
basic RNN-based RL agent introduced in the first part of the paper, showing
that we can potentially achieve higher average profits with a rather evident
risk-return trade-off. We believe that this RL-based hedging framework is a
more efficient way of performing hedging in practice, addressing some of the
inherent issues with the classic models, providing promising/intuitive hedging
results, and rendering a flexible framework that can be easily paired with
other AI-based models for many other purposes.
- Abstract(参考訳): 本稿では,ディープラーニングと人工知能の金融応用,特にヘッジへの応用について紹介する。
主な目的は2つの目的である。
まず,単純なバニラ欧州コールオプションを複製した直接ポリシー検索強化エージェントの枠組みを示し,モデルフリーデルタヘッジにエージェントを使用する。
本稿では,RNNをベースとした直接ポリシー探索RLエージェントが,パラメトリックに生成された基礎シナリオ,特にリスク回避パラメータのより高い値でのテール露光を最小限に抑えることに基づいて,Q-worldの古典的なブラック・ショールズモデルよりもデルタヘッジを行うことができることを示す。
本論文の第2部では,多変量時間空間からの時系列GANが生成する非パラメトリックパスを用いて,本論文の第1部で導入した基本RNNベースRLエージェントを用いて,リスク回避パラメータの様々な値に対するデルタヘッジ性能を示す。
このrlベースのヘッジフレームワークは、より効率的なヘッジの実行方法であり、古典的なモデルに固有の問題に対処し、有望で直観的なヘッジ結果を提供し、他の多くの目的のために他のaiベースのモデルと簡単にペアリングできる柔軟なフレームワークを作成する。
関連論文リスト
- KAN based Autoencoders for Factor Models [13.512750745176664]
Kolmogorov-Arnold Networks (KANs) の最近の進歩に触発されて、潜在因子条件付き資産価格モデルに新しいアプローチを導入する。
提案手法では,精度と解釈性の両方でモデルを超えるkanベースのオートエンコーダを提案する。
提案モデルは,資産特性の非線形機能として露出を近似する際の柔軟性を向上するとともに,潜在要因を解釈するための直感的なフレームワークをユーザに提供する。
論文 参考訳(メタデータ) (2024-08-04T02:02:09Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - REX: Rapid Exploration and eXploitation for AI Agents [103.68453326880456]
本稿では、REXと呼ばれるAIエージェントのための高速探索およびeXploitationのための改良されたアプローチを提案する。
REXは追加の報酬層を導入し、アッパー信頼境界(UCB)スコアに似た概念を統合し、より堅牢で効率的なAIエージェントのパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-07-18T04:26:33Z) - Introducing Foundation Models as Surrogate Models: Advancing Towards
More Practical Adversarial Attacks [15.882687207499373]
箱なしの敵攻撃は、AIシステムにとってより実用的で難しいものになりつつある。
本稿では,サロゲートモデルとして基礎モデルを導入することにより,逆攻撃を下流タスクとして再放送する。
論文 参考訳(メタデータ) (2023-07-13T08:10:48Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
自己整合性を維持しつつ高いリターンを達成するために,潜在空間モデルとポリシーを協調的に最適化する単一目的を提案する。
得られたアルゴリズムは, モデルベースおよびモデルフリーRL手法のサンプル効率に適合するか, 改善することを示した。
論文 参考訳(メタデータ) (2022-09-18T03:51:58Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Estimating risks of option books using neural-SDE market models [6.319314191226118]
我々は、仲裁自由なニューラル-SDE市場モデルを用いて、単一基盤上の複数のヨーロッパオプションのジョイントダイナミクスの現実的なシナリオを生成する。
提案モデルでは,オプションポートフォリオのバリュー・アット・リスク(VaR)を評価する上で,計算効率が高く,精度も高く,カバー性能も向上し,従来のフィルタによるシミュレーション手法よりもプロサイクル性も低いことを示す。
論文 参考訳(メタデータ) (2022-02-15T02:39:42Z) - Reinforcement Learning as One Big Sequence Modeling Problem [84.84564880157149]
強化学習(Reinforcement Learning, RL)は、通常、単一ステップポリシーや単一ステップモデルの推定に関係している。
我々は、RLをシーケンスモデリング問題とみなし、高い報酬のシーケンスにつながる一連のアクションを予測することを目標としている。
論文 参考訳(メタデータ) (2021-06-03T17:58:51Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Detecting and adapting to crisis pattern with context based Deep
Reinforcement Learning [6.224519494738852]
本稿では、2つのサブネットワークで構成された革新的なDRLフレームワークを提案する。
テストセットの結果、このアプローチはMarkowitzのような従来のポートフォリオ最適化手法を大幅に上回っており、現在のCovidのような危機を検出し予測することができる。
論文 参考訳(メタデータ) (2020-09-07T12:11:08Z) - Robust pricing and hedging via neural SDEs [0.0]
我々は,ニューラルSDEの効率的な利用に必要な新しいアルゴリズムを開発し,分析する。
我々は、関連する市場データを取り入れつつ、デリバティブの価格とそれに対応するヘッジ戦略の堅牢な境界を見出した。
ニューラルSDEはリスクニュートラルと現実世界の両方で一貫したキャリブレーションを可能にする。
論文 参考訳(メタデータ) (2020-07-08T14:33:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。