SCRIB: Set-classifier with Class-specific Risk Bounds for Blackbox
Models
- URL: http://arxiv.org/abs/2103.03945v1
- Date: Fri, 5 Mar 2021 21:06:12 GMT
- Title: SCRIB: Set-classifier with Class-specific Risk Bounds for Blackbox
Models
- Authors: Zhen Lin, Cao Xiao, Lucas Glass, M. Brandon Westover, Jimeng Sun
- Abstract summary: We introduce Set-classifier with Class-specific RIsk Bounds (SCRIB) to tackle this problem.
SCRIB constructs a set-classifier that controls the class-specific prediction risks with a theoretical guarantee.
We validated SCRIB on several medical applications, including sleep staging on electroencephalogram (EEG) data, X-ray COVID image classification, and atrial fibrillation detection based on electrocardiogram (ECG) data.
- Score: 48.374678491735665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite deep learning (DL) success in classification problems, DL classifiers
do not provide a sound mechanism to decide when to refrain from predicting.
Recent works tried to control the overall prediction risk with classification
with rejection options. However, existing works overlook the different
significance of different classes. We introduce Set-classifier with
Class-specific RIsk Bounds (SCRIB) to tackle this problem, assigning multiple
labels to each example. Given the output of a black-box model on the validation
set, SCRIB constructs a set-classifier that controls the class-specific
prediction risks with a theoretical guarantee. The key idea is to reject when
the set classifier returns more than one label. We validated SCRIB on several
medical applications, including sleep staging on electroencephalogram (EEG)
data, X-ray COVID image classification, and atrial fibrillation detection based
on electrocardiogram (ECG) data. SCRIB obtained desirable class-specific risks,
which are 35\%-88\% closer to the target risks than baseline methods.
Related papers
- Quality assurance of organs-at-risk delineation in radiotherapy [7.698565355235687]
The delineation of tumor target and organs-at-risk is critical in the radiotherapy treatment planning.
The quality assurance of the automatic segmentation is still an unmet need in clinical practice.
Our proposed model, which introduces residual network and attention mechanism in the one-class classification framework, was able to detect the various types of OAR contour errors with high accuracy.
arXiv Detail & Related papers (2024-05-20T02:32:46Z) - Probabilistic Safety Regions Via Finite Families of Scalable Classifiers [2.431537995108158]
Supervised classification recognizes patterns in the data to separate classes of behaviours.
Canonical solutions contain misclassification errors that are intrinsic to the numerical approximating nature of machine learning.
We introduce the concept of probabilistic safety region to describe a subset of the input space in which the number of misclassified instances is probabilistically controlled.
arXiv Detail & Related papers (2023-09-08T22:40:19Z) - Learning from Multiple Unlabeled Datasets with Partial Risk
Regularization [80.54710259664698]
In this paper, we aim to learn an accurate classifier without any class labels.
We first derive an unbiased estimator of the classification risk that can be estimated from the given unlabeled sets.
We then find that the classifier obtained as such tends to cause overfitting as its empirical risks go negative during training.
Experiments demonstrate that our method effectively mitigates overfitting and outperforms state-of-the-art methods for learning from multiple unlabeled sets.
arXiv Detail & Related papers (2022-07-04T16:22:44Z) - BoMD: Bag of Multi-label Descriptors for Noisy Chest X-ray
Classification [25.76256302330625]
New medical imaging classification problems may need to rely on machine-generated noisy labels extracted from radiology reports.
Current noisy-label learning methods designed for multi-class problems cannot be easily adapted.
We propose a new method designed for the noisy multi-label CXR learning, which detects and smoothly re-labels samples from the dataset.
arXiv Detail & Related papers (2022-03-03T08:04:59Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Multi-class Probabilistic Bounds for Self-learning [13.875239300089861]
Pseudo-labeling is prone to error and runs the risk of adding noisy labels into unlabeled training data.
We present a probabilistic framework for analyzing self-learning in the multi-class classification scenario with partially labeled data.
arXiv Detail & Related papers (2021-09-29T13:57:37Z) - Classification with Rejection Based on Cost-sensitive Classification [83.50402803131412]
We propose a novel method of classification with rejection by ensemble of learning.
Experimental results demonstrate the usefulness of our proposed approach in clean, noisy, and positive-unlabeled classification.
arXiv Detail & Related papers (2020-10-22T14:05:05Z) - How to Control the Error Rates of Binary Classifiers [0.0]
We show how to turn binary classification into statistical tests, calculate the classification p-values, and use them to limit the target error rate.
In particular, we show how to turn binary classifiers into statistical tests, calculate the classification p-values, and use them to limit the target error rate.
arXiv Detail & Related papers (2020-10-21T14:43:14Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
Machine learning algorithms are susceptible to data poisoning attacks.
We present a unifying view of randomized smoothing over arbitrary functions.
We propose a new strategy for building classifiers that are pointwise-certifiably robust to general data poisoning attacks.
arXiv Detail & Related papers (2020-02-07T21:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.