Global canopy height estimation with GEDI LIDAR waveforms and Bayesian
deep learning
- URL: http://arxiv.org/abs/2103.03975v1
- Date: Fri, 5 Mar 2021 23:08:27 GMT
- Title: Global canopy height estimation with GEDI LIDAR waveforms and Bayesian
deep learning
- Authors: Nico Lang, Nikolai Kalischek, John Armston, Konrad Schindler, Ralph
Dubayah, Jan Dirk Wegner
- Abstract summary: NASA's Global Ecosystem Dynamics Investigation (GEDI) is a key climate mission whose goal is to advance our understanding of the role of forests in the global carbon cycle.
We present a novel supervised machine learning approach to interpret GEDI waveforms and regress canopy top height globally.
- Score: 20.692092680921274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: NASA's Global Ecosystem Dynamics Investigation (GEDI) is a key climate
mission whose goal is to advance our understanding of the role of forests in
the global carbon cycle. While GEDI is the first space-based LIDAR explicitly
optimized to measure vertical forest structure predictive of aboveground
biomass, the accurate interpretation of this vast amount of waveform data
across the broad range of observational and environmental conditions is
challenging. Here, we present a novel supervised machine learning approach to
interpret GEDI waveforms and regress canopy top height globally. We propose a
Bayesian convolutional neural network (CNN) to avoid the explicit modelling of
unknown effects, such as atmospheric noise. The model learns to extract robust
features that generalize to unseen geographical regions and, in addition,
yields reliable estimates of predictive uncertainty. Ultimately, the global
canopy top height estimates produced by our model have an expected RMSE of 2.7
m with low bias.
Related papers
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - 3D-SAR Tomography and Machine Learning for High-Resolution Tree Height Estimation [4.1942958779358674]
Tree height, a key factor in biomass calculations, can be measured using Synthetic Aperture Radar (SAR) technology.
This study applies machine learning to extract forest height data from two SAR products.
We use the TomoSense dataset, containing SAR and LiDAR data from Germany's Eifel National Park, to develop and evaluate height estimation models.
arXiv Detail & Related papers (2024-09-09T14:07:38Z) - Unified Deep Learning Model for Global Prediction of Aboveground Biomass, Canopy Height and Cover from High-Resolution, Multi-Sensor Satellite Imagery [0.196629787330046]
We present a new methodology which uses multi-sensor, multi-spectral imagery of 10 meters and a deep learning based model which unifies the prediction of above ground biomass density (AGBD), canopy height (CH), canopy cover (CC)
The model is trained on millions of globally sampled GEDI-L2/L4 measurements. We validate the capability of our model by deploying it over the entire globe for the year 2023 as well as annually from 2016 to 2023 over selected areas.
arXiv Detail & Related papers (2024-08-20T23:15:41Z) - Estimating Canopy Height at Scale [15.744009072839425]
We propose a framework for global-scale canopy height estimation based on satellite data.
A comparison between predictions and ground-truth labels yields an MAE / RMSE of 2.43 / 4.73 (meters) overall and 4.45 / 6.72 (meters) for trees taller than five meters.
arXiv Detail & Related papers (2024-06-03T07:53:38Z) - Individual mapping of large polymorphic shrubs in high mountains using satellite images and deep learning [1.6889377382676625]
We release a large dataset of individual shrub delineations on freely available satellite imagery.
We use an instance segmentation model to map all junipers over the treeline for an entire biosphere reserve.
Our model achieved an F1-score in shrub delineation of 87.87% on the PI data and 76.86% on the FW data.
arXiv Detail & Related papers (2024-01-31T16:44:20Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Multi-modal learning for geospatial vegetation forecasting [1.8180482634934092]
We introduce GreenEarthNet, the first dataset specifically designed for high-resolution vegetation forecasting.
We also present Contextformer, a novel deep learning approach for predicting vegetation greenness from Sentinel 2 satellite images.
To the best of our knowledge, this work presents the first models for continental-scale vegetation modeling at fine resolution able to capture anomalies beyond the seasonal cycle.
arXiv Detail & Related papers (2023-03-28T17:59:05Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
We train NN based cloud cover parameterizations with coarse-grained data based on realistic regional and global ICON simulations.
Globally trained NNs can reproduce sub-grid scale cloud cover of the regional simulation.
We identify an overemphasis on specific humidity and cloud ice as the reason why our column-based NN cannot perfectly generalize from the global to the regional coarse-grained data.
arXiv Detail & Related papers (2021-12-21T16:10:45Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
We propose a Bayesian deep learning approach to densely estimate forest structure variables at country-scale with 10-meter resolution.
Our method jointly transforms Sentinel-2 optical images and Sentinel-1 synthetic aperture radar images into maps of five different forest structure variables.
We train and test our model on reference data from 41 airborne laser scanning missions across Norway.
arXiv Detail & Related papers (2021-11-25T16:21:28Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.