Tensor Laplacian Regularized Low-Rank Representation for Non-uniformly
Distributed Data Subspace Clustering
- URL: http://arxiv.org/abs/2103.04064v1
- Date: Sat, 6 Mar 2021 08:22:24 GMT
- Title: Tensor Laplacian Regularized Low-Rank Representation for Non-uniformly
Distributed Data Subspace Clustering
- Authors: Eysan Mehrbani, Mohammad Hossein Kahaei, Seyed Aliasghar Beheshti
- Abstract summary: Low-Rank Representation (LRR) suffers from discarding the locality information of data points in subspace clustering.
We propose a hypergraph model to facilitate having a variable number of adjacent nodes and incorporating the locality information of the data.
Experiments on artificial and real datasets demonstrate the higher accuracy and precision of the proposed method.
- Score: 2.578242050187029
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Low-Rank Representation (LRR) highly suffers from discarding the locality
information of data points in subspace clustering, as it may not incorporate
the data structure nonlinearity and the non-uniform distribution of
observations over the ambient space. Thus, the information of the observational
density is lost by the state-of-art LRR models, as they take a constant number
of adjacent neighbors into account. This, as a result, degrades the subspace
clustering accuracy in such situations. To cope with deficiency, in this paper,
we propose to consider a hypergraph model to facilitate having a variable
number of adjacent nodes and incorporating the locality information of the
data. The sparsity of the number of subspaces is also taken into account. To do
so, an optimization problem is defined based on a set of regularization terms
and is solved by developing a tensor Laplacian-based algorithm. Extensive
experiments on artificial and real datasets demonstrate the higher accuracy and
precision of the proposed method in subspace clustering compared to the
state-of-the-art methods. The outperformance of this method is more revealed in
presence of inherent structure of the data such as nonlinearity, geometrical
overlapping, and outliers.
Related papers
- Diffusion-based Semi-supervised Spectral Algorithm for Regression on Manifolds [2.0649432688817444]
We introduce a novel diffusion-based spectral algorithm to tackle regression analysis on high-dimensional data.
Our method uses the local estimation property of heat kernel, offering an adaptive, data-driven approach to overcome this obstacle.
Our algorithm performs in an entirely data-driven manner, operating directly within the intrinsic manifold structure of the data.
arXiv Detail & Related papers (2024-10-18T15:29:04Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - Learning Structure Aware Deep Spectral Embedding [11.509692423756448]
We propose a novel structure-aware deep spectral embedding by combining a spectral embedding loss and a structure preservation loss.
A deep neural network architecture is proposed that simultaneously encodes both types of information and aims to generate structure-aware spectral embedding.
The proposed algorithm is evaluated on six publicly available real-world datasets.
arXiv Detail & Related papers (2023-05-14T18:18:05Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
Normalizing Flows (NFs) are flexible explicit generative models that have been shown to accurately model complex real-world data distributions.
We propose an optimization objective that recovers the most likely point on the manifold given a sample from the perturbed distribution.
Finally, we focus on 3D point clouds for which we utilize the explicit nature of NFs, i.e. surface normals extracted from the gradient of the log-likelihood and the log-likelihood itself.
arXiv Detail & Related papers (2022-08-18T16:07:59Z) - Laplacian-based Cluster-Contractive t-SNE for High Dimensional Data
Visualization [20.43471678277403]
We propose LaptSNE, a new graph-based dimensionality reduction method based on t-SNE.
Specifically, LaptSNE leverages the eigenvalue information of the graph Laplacian to shrink the potential clusters in the low-dimensional embedding.
We show how to calculate the gradient analytically, which may be of broad interest when considering optimization with Laplacian-composited objective.
arXiv Detail & Related papers (2022-07-25T14:10:24Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
In this letter we introduce an algorithm to infer the intrinsic dimension (ID) of datasets embedded in discrete spaces.
We demonstrate its accuracy on benchmark datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting.
This suggests that evolutive pressure acts on a low-dimensional manifold despite the high-dimensionality of sequences' space.
arXiv Detail & Related papers (2022-07-20T06:38:36Z) - Learning Low-Dimensional Nonlinear Structures from High-Dimensional
Noisy Data: An Integral Operator Approach [5.975670441166475]
We propose a kernel-spectral embedding algorithm for learning low-dimensional nonlinear structures from high-dimensional and noisy observations.
The algorithm employs an adaptive bandwidth selection procedure which does not rely on prior knowledge of the underlying manifold.
The obtained low-dimensional embeddings can be further utilized for downstream purposes such as data visualization, clustering and prediction.
arXiv Detail & Related papers (2022-02-28T22:46:34Z) - Density-Based Clustering with Kernel Diffusion [59.4179549482505]
A naive density corresponding to the indicator function of a unit $d$-dimensional Euclidean ball is commonly used in density-based clustering algorithms.
We propose a new kernel diffusion density function, which is adaptive to data of varying local distributional characteristics and smoothness.
arXiv Detail & Related papers (2021-10-11T09:00:33Z) - Multilevel orthogonal Bochner function subspaces with applications to
robust machine learning [1.533771872970755]
We consider the data as instances of a random field within a relevant Bochner space.
Our key observation is that the classes can predominantly reside in two distinct subspaces.
arXiv Detail & Related papers (2021-10-04T22:01:01Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
We propose a new Semi-Nonnegative Matrix Factorization method for 2-dimensional (2D) data, named TS-NMF.
It overcomes the drawback of existing methods that seriously damage the spatial information of the data by converting 2D data to vectors in a preprocessing step.
arXiv Detail & Related papers (2020-05-19T05:54:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.