Multilevel orthogonal Bochner function subspaces with applications to
robust machine learning
- URL: http://arxiv.org/abs/2110.01729v4
- Date: Fri, 25 Aug 2023 18:23:26 GMT
- Title: Multilevel orthogonal Bochner function subspaces with applications to
robust machine learning
- Authors: Julio Enrique Castrillon-Candas, Dingning Liu, Sicheng Yang, Mark Kon
- Abstract summary: We consider the data as instances of a random field within a relevant Bochner space.
Our key observation is that the classes can predominantly reside in two distinct subspaces.
- Score: 1.533771872970755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In our approach, we consider the data as instances of a random field within a
relevant Bochner space. Our key observation is that the classes can
predominantly reside in two distinct subspaces. To uncover the separation
between these classes, we employ the Karhunen-Loeve expansion and construct the
appropriate subspaces. This allows us to effectively reveal the distinction
between the classes. The novel features forming the above bases are constructed
by applying a coordinate transformation based on the recent Functional Data
Analysis theory for anomaly detection. The associated signal decomposition is
an exact hierarchical tensor product expansion with known optimality properties
for approximating stochastic processes (random fields) with finite dimensional
function spaces. Using a hierarchical finite dimensional expansion of the
nominal class, a series of orthogonal nested subspaces is constructed for
detecting anomalous signal components. Projection coefficients of input data in
these subspaces are then used to train a Machine Learning (ML classifier.
However, due to the split of the signal into nominal and anomalous projection
components, clearer separation surfaces for the classes arise. In fact we show
that with a sufficiently accurate estimation of the covariance structure of the
nominal class, a sharp classification can be obtained. This is particularly
advantageous for large unbalanced datasets. We demonstrate it on a number of
high-dimensional datasets. This approach yields significant increases in
accuracy of ML methods compared to using the same ML algorithm with the
original feature data. Our tests on the Alzheimer's Disease ADNI dataset shows
a dramatic increase in accuracy (from 48% to 89% accuracy). Furthermore, tests
using unbalanced semi-synthetic datasets created from the benchmark GCM dataset
confirm increased accuracy as the dataset becomes more unbalanced.
Related papers
- Symmetry Discovery for Different Data Types [52.2614860099811]
Equivariant neural networks incorporate symmetries into their architecture, achieving higher generalization performance.
We propose LieSD, a method for discovering symmetries via trained neural networks which approximate the input-output mappings of the tasks.
We validate the performance of LieSD on tasks with symmetries such as the two-body problem, the moment of inertia matrix prediction, and top quark tagging.
arXiv Detail & Related papers (2024-10-13T13:39:39Z) - Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers [54.20763128054692]
We study how a two-attention-layer transformer is trained to perform ICL on $n$-gram Markov chain data.
We prove that the gradient flow with respect to a cross-entropy ICL loss converges to a limiting model.
arXiv Detail & Related papers (2024-09-09T18:10:26Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
We propose a new framework for learning molecular representations that exhibit invariance and robustness against distribution shifts.
Our model achieves stronger generalization against state-of-the-art baselines in the presence of various distribution shifts.
arXiv Detail & Related papers (2023-10-22T04:06:44Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
Simplicial complexes prove effective in modeling data with multiway dependencies.
We develop a contrastive self-supervised learning approach for processing simplicial data.
arXiv Detail & Related papers (2023-09-14T00:40:07Z) - Extension of Transformational Machine Learning: Classification Problems [0.0]
This study explores the application and performance of Transformational Machine Learning (TML) in drug discovery.
TML, a meta learning algorithm, excels in exploiting common attributes across various domains.
The drug discovery process, which is complex and time-consuming, can benefit greatly from the enhanced prediction accuracy.
arXiv Detail & Related papers (2023-08-07T07:34:18Z) - Exploring the Space of Key-Value-Query Models with Intention [8.585795909956726]
Two key components of Attention are the structure of its input (which consists of keys, values and queries) and the computations by which these three are combined.
We refer to this space as Keys-Values-Queries ( KVQ) Space.
Our goal is to determine whether there are any other stackable models in KVQ Space that Attention cannot efficiently approximate.
arXiv Detail & Related papers (2023-05-17T13:25:57Z) - Random Smoothing Regularization in Kernel Gradient Descent Learning [24.383121157277007]
We present a framework for random smoothing regularization that can adaptively learn a wide range of ground truth functions belonging to the classical Sobolev spaces.
Our estimator can adapt to the structural assumptions of the underlying data and avoid the curse of dimensionality.
arXiv Detail & Related papers (2023-05-05T13:37:34Z) - Sharp-SSL: Selective high-dimensional axis-aligned random projections
for semi-supervised learning [16.673022545571566]
We propose a new method for high-dimensional semi-supervised learning problems.
It is based on the careful aggregation of the results of a low-dimensional procedure applied to many axis-aligned random projections of the data.
arXiv Detail & Related papers (2023-04-18T17:49:02Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Factorization Approach for Sparse Spatio-Temporal Brain-Computer
Interface [17.85507707727557]
We show that factorizing EEG signals allows the model to extract rich and decisive features under sparse condition.
Evaluations were conducted on a single-arm motor imagery dataset.
arXiv Detail & Related papers (2022-06-17T00:30:43Z) - Subspace clustering in high-dimensions: Phase transitions \&
Statistical-to-Computational gap [24.073221004661427]
A simple model to study subspace clustering is the high-dimensional $k$-Gaussian mixture model.
We provide an exact characterization of the statistically optimal reconstruction error in this model in the high-dimensional regime with extensive sparsity.
arXiv Detail & Related papers (2022-05-26T17:47:35Z) - Dendritic Self-Organizing Maps for Continual Learning [0.0]
We propose a novel algorithm inspired by biological neurons, termed Dendritic-Self-Organizing Map (DendSOM)
DendSOM consists of a single layer of SOMs, which extract patterns from specific regions of the input space.
It outperforms classical SOMs and several state-of-the-art continual learning algorithms on benchmark datasets.
arXiv Detail & Related papers (2021-10-18T14:47:19Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
Bi-Lipschitz regularization of neural network layers preserve relative distances between data instances in the feature spaces of each layer.
With the use of an attentive set encoder, we propose to meta learn either diagonal or diagonal plus low-rank factors to efficiently construct task specific covariance matrices.
We also propose an inference procedure which utilizes scaled energy to achieve a final predictive distribution.
arXiv Detail & Related papers (2021-10-12T22:04:19Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - Tensor Laplacian Regularized Low-Rank Representation for Non-uniformly
Distributed Data Subspace Clustering [2.578242050187029]
Low-Rank Representation (LRR) suffers from discarding the locality information of data points in subspace clustering.
We propose a hypergraph model to facilitate having a variable number of adjacent nodes and incorporating the locality information of the data.
Experiments on artificial and real datasets demonstrate the higher accuracy and precision of the proposed method.
arXiv Detail & Related papers (2021-03-06T08:22:24Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Network Classifiers Based on Social Learning [71.86764107527812]
We propose a new way of combining independently trained classifiers over space and time.
The proposed architecture is able to improve prediction performance over time with unlabeled data.
We show that this strategy results in consistent learning with high probability, and it yields a robust structure against poorly trained classifiers.
arXiv Detail & Related papers (2020-10-23T11:18:20Z) - Learning Self-Expression Metrics for Scalable and Inductive Subspace
Clustering [5.587290026368626]
Subspace clustering has established itself as a state-of-the-art approach to clustering high-dimensional data.
We propose a novel metric learning approach to learn instead a subspace affinity function using a siamese neural network architecture.
Our model benefits from a constant number of parameters and a constant-size memory footprint, allowing it to scale to considerably larger datasets.
arXiv Detail & Related papers (2020-09-27T15:40:12Z) - Joint and Progressive Subspace Analysis (JPSA) with Spatial-Spectral
Manifold Alignment for Semi-Supervised Hyperspectral Dimensionality Reduction [48.73525876467408]
We propose a novel technique for hyperspectral subspace analysis.
The technique is called joint and progressive subspace analysis (JPSA)
Experiments are conducted to demonstrate the superiority and effectiveness of the proposed JPSA on two widely-used hyperspectral datasets.
arXiv Detail & Related papers (2020-09-21T16:29:59Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Spectral Learning on Matrices and Tensors [74.88243719463053]
We show that tensor decomposition can pick up latent effects that are missed by matrix methods.
We also outline computational techniques to design efficient tensor decomposition methods.
arXiv Detail & Related papers (2020-04-16T22:53:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.