Counterfactuals and Causability in Explainable Artificial Intelligence:
Theory, Algorithms, and Applications
- URL: http://arxiv.org/abs/2103.04244v1
- Date: Sun, 7 Mar 2021 03:11:39 GMT
- Title: Counterfactuals and Causability in Explainable Artificial Intelligence:
Theory, Algorithms, and Applications
- Authors: Yu-Liang Chou and Catarina Moreira and Peter Bruza and Chun Ouyang and
Joaquim Jorge
- Abstract summary: Some researchers argued that for a machine to achieve a certain degree of human-level explainability, it needs to provide causally understandable explanations.
A specific class of algorithms that have the potential to provide causability are counterfactuals.
This paper presents an in-depth systematic review of the diverse existing body of literature on counterfactuals and causability for explainable artificial intelligence.
- Score: 0.20999222360659603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been a growing interest in model-agnostic methods that can make
deep learning models more transparent and explainable to a user. Some
researchers recently argued that for a machine to achieve a certain degree of
human-level explainability, this machine needs to provide human causally
understandable explanations, also known as causability. A specific class of
algorithms that have the potential to provide causability are counterfactuals.
This paper presents an in-depth systematic review of the diverse existing body
of literature on counterfactuals and causability for explainable artificial
intelligence. We performed an LDA topic modelling analysis under a PRISMA
framework to find the most relevant literature articles. This analysis resulted
in a novel taxonomy that considers the grounding theories of the surveyed
algorithms, together with their underlying properties and applications in
real-world data. This research suggests that current model-agnostic
counterfactual algorithms for explainable AI are not grounded on a causal
theoretical formalism and, consequently, cannot promote causability to a human
decision-maker. Our findings suggest that the explanations derived from major
algorithms in the literature provide spurious correlations rather than
cause/effects relationships, leading to sub-optimal, erroneous or even biased
explanations. This paper also advances the literature with new directions and
challenges on promoting causability in model-agnostic approaches for
explainable artificial intelligence.
Related papers
- Unraveling the Dilemma of AI Errors: Exploring the Effectiveness of Human and Machine Explanations for Large Language Models [8.863857300695667]
We analyzed 156 human-generated text and saliency-based explanations in a question-answering task.
Our findings show that participants found human saliency maps to be more helpful in explaining AI answers than machine saliency maps.
This finding hints at the dilemma of AI errors in explanation, where helpful explanations can lead to lower task performance when they support wrong AI predictions.
arXiv Detail & Related papers (2024-04-11T13:16:51Z) - Gradient based Feature Attribution in Explainable AI: A Technical Review [13.848675695545909]
Surge in black-box AI models has prompted the need to explain the internal mechanism and justify their reliability.
gradient based explanations can be directly adopted for neural network models.
We introduce both human and quantitative evaluations to measure algorithm performance.
arXiv Detail & Related papers (2024-03-15T15:49:31Z) - Emergence and Causality in Complex Systems: A Survey on Causal Emergence
and Related Quantitative Studies [12.78006421209864]
Causal emergence theory employs measures of causality to quantify emergence.
Two key problems are addressed: quantifying causal emergence and identifying it in data.
We highlighted that the architectures used for identifying causal emergence are shared by causal representation learning, causal model abstraction, and world model-based reinforcement learning.
arXiv Detail & Related papers (2023-12-28T04:20:46Z) - Deep Learning Reproducibility and Explainable AI (XAI) [9.13755431537592]
The nondeterminism of Deep Learning (DL) training algorithms and its influence on the explainability of neural network (NN) models are investigated.
To discuss the issue, two convolutional neural networks (CNN) have been trained and their results compared.
arXiv Detail & Related papers (2022-02-23T12:06:20Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
An object called structural causal model (SCM) represents a collection of mechanisms and sources of random variation of the system under investigation.
In this paper, we show that the causal hierarchy theorem (Thm. 1, Bareinboim et al., 2020) still holds for neural models.
We introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive bias to encode structural constraints necessary for performing causal inferences.
arXiv Detail & Related papers (2021-07-02T01:55:18Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.