Unraveling the Dilemma of AI Errors: Exploring the Effectiveness of Human and Machine Explanations for Large Language Models
- URL: http://arxiv.org/abs/2404.07725v1
- Date: Thu, 11 Apr 2024 13:16:51 GMT
- Title: Unraveling the Dilemma of AI Errors: Exploring the Effectiveness of Human and Machine Explanations for Large Language Models
- Authors: Marvin Pafla, Kate Larson, Mark Hancock,
- Abstract summary: We analyzed 156 human-generated text and saliency-based explanations in a question-answering task.
Our findings show that participants found human saliency maps to be more helpful in explaining AI answers than machine saliency maps.
This finding hints at the dilemma of AI errors in explanation, where helpful explanations can lead to lower task performance when they support wrong AI predictions.
- Score: 8.863857300695667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of eXplainable artificial intelligence (XAI) has produced a plethora of methods (e.g., saliency-maps) to gain insight into artificial intelligence (AI) models, and has exploded with the rise of deep learning (DL). However, human-participant studies question the efficacy of these methods, particularly when the AI output is wrong. In this study, we collected and analyzed 156 human-generated text and saliency-based explanations collected in a question-answering task (N=40) and compared them empirically to state-of-the-art XAI explanations (integrated gradients, conservative LRP, and ChatGPT) in a human-participant study (N=136). Our findings show that participants found human saliency maps to be more helpful in explaining AI answers than machine saliency maps, but performance negatively correlated with trust in the AI model and explanations. This finding hints at the dilemma of AI errors in explanation, where helpful explanations can lead to lower task performance when they support wrong AI predictions.
Related papers
- Do great minds think alike? Investigating Human-AI Complementarity in Question Answering with CAIMIRA [43.116608441891096]
Humans outperform AI systems in knowledge-grounded abductive and conceptual reasoning.
State-of-the-art LLMs like GPT-4 and LLaMA show superior performance on targeted information retrieval.
arXiv Detail & Related papers (2024-10-09T03:53:26Z) - Don't be Fooled: The Misinformation Effect of Explanations in Human-AI Collaboration [11.824688232910193]
We run a study on AI-assisted decision-making in which humans were supported by XAI.
Our findings reveal a misinformation effect when incorrect explanations accompany correct AI advice.
This effect causes humans to infer flawed reasoning strategies, hindering task execution and demonstrating impaired procedural knowledge.
arXiv Detail & Related papers (2024-09-19T14:34:20Z) - Measuring Human Contribution in AI-Assisted Content Generation [68.03658922067487]
This study raises the research question of measuring human contribution in AI-assisted content generation.
By calculating mutual information between human input and AI-assisted output relative to self-information of AI-assisted output, we quantify the proportional information contribution of humans in content generation.
arXiv Detail & Related papers (2024-08-27T05:56:04Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - Understanding the Effect of Counterfactual Explanations on Trust and
Reliance on AI for Human-AI Collaborative Clinical Decision Making [5.381004207943597]
We conducted an experiment with seven therapists and ten laypersons on the task of assessing post-stroke survivors' quality of motion.
We analyzed their performance, agreement level on the task, and reliance on AI without and with two types of AI explanations.
Our work discusses the potential of counterfactual explanations to better estimate the accuracy of an AI model and reduce over-reliance on wrong' AI outputs.
arXiv Detail & Related papers (2023-08-08T16:23:46Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - On Explainability in AI-Solutions: A Cross-Domain Survey [4.394025678691688]
In automatically deriving a system model, AI algorithms learn relations in data that are not detectable for humans.
The more complex a model, the more difficult it is for a human to understand the reasoning for the decisions.
This work provides an extensive survey of literature on this topic, which, to a large part, consists of other surveys.
arXiv Detail & Related papers (2022-10-11T06:21:47Z) - Diagnosing AI Explanation Methods with Folk Concepts of Behavior [70.10183435379162]
We consider "success" to depend not only on what information the explanation contains, but also on what information the human explainee understands from it.
We use folk concepts of behavior as a framework of social attribution by the human explainee.
arXiv Detail & Related papers (2022-01-27T00:19:41Z) - Counterfactuals and Causability in Explainable Artificial Intelligence:
Theory, Algorithms, and Applications [0.20999222360659603]
Some researchers argued that for a machine to achieve a certain degree of human-level explainability, it needs to provide causally understandable explanations.
A specific class of algorithms that have the potential to provide causability are counterfactuals.
This paper presents an in-depth systematic review of the diverse existing body of literature on counterfactuals and causability for explainable artificial intelligence.
arXiv Detail & Related papers (2021-03-07T03:11:39Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.