論文の概要: Quantum K-nearest neighbor classification algorithm based on Hamming
distance
- arxiv url: http://arxiv.org/abs/2103.04253v2
- Date: Fri, 31 Mar 2023 07:47:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-03 18:39:24.671339
- Title: Quantum K-nearest neighbor classification algorithm based on Hamming
distance
- Title(参考訳): ハミング距離に基づく量子k-ネアレスト近傍分類アルゴリズム
- Authors: Jing Li, Song Lin, Yu Kai, Gongde Guo
- Abstract要約: 本研究では,ハミング距離を持つ量子K-アレスト近傍分類アルゴリズムを提案する。
提案アルゴリズムは,時間的複雑さを短時間で解析することにより,2次高速化を実現することができる。
- 参考スコア(独自算出の注目度): 3.4501155479285326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: K-nearest neighbor classification algorithm is one of the most basic
algorithms in machine learning, which determines the sample's category by the
similarity between samples. In this paper, we propose a quantum K-nearest
neighbor classification algorithm with Hamming distance. In this algorithm,
quantum computation is firstly utilized to obtain Hamming distance in parallel.
Then, a core sub-algorithm for searching the minimum of unordered integer
sequence is presented to find out the minimum distance. Based on these two
sub-algorithms, the whole quantum frame of K-nearest neighbor classification
algorithm is presented. At last, it is shown that the proposed algorithm can
achieve a quadratical speedup by analyzing its time complexity briefly.
- Abstract(参考訳): k-nearest近傍分類アルゴリズムは、サンプル間の類似性によってサンプルのカテゴリを決定する機械学習における最も基本的なアルゴリズムの1つである。
本稿では,ハミング距離を持つ量子K-アネレスト近傍分類アルゴリズムを提案する。
このアルゴリズムでは、まず量子計算を用いてハミング距離を並列に取得する。
そして、未順序整数列の最小値を求めるためのコア・サブアルゴリズムを示し、最小距離を求める。
これら2つのサブアルゴリズムに基づいて、K-アネレスト近傍分類アルゴリズムの全量子フレームを示す。
最後に,提案アルゴリズムは時間複雑性を短時間で解析することにより,2次高速化を実現することができることを示した。
関連論文リスト
- Quantum-Based Feature Selection for Multi-classification Problem in
Complex Systems with Edge Computing [15.894122816099133]
マルチクラス化問題,すなわちQReliefFに対する量子ベースの特徴選択アルゴリズムを提案する。
我々のアルゴリズムは、O(M) から O(sqrt(M)) への複雑さを減らし、最も近い隣人を見つけるのに優れている。
論文 参考訳(メタデータ) (2023-10-01T03:57:13Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Quantum jet clustering with LHC simulated data [0.0]
2つの新しい量子アルゴリズムは、古典的なジェットクラスタリングアルゴリズムを高速化する。
最初の2つのアルゴリズムでは、次元とデータ長の指数的なスピードアップを達成することができる。
k_T$アルゴリズムでは、FastJetと同じ順序の量子バージョンが達成される。
論文 参考訳(メタデータ) (2022-09-19T10:51:13Z) - A density peaks clustering algorithm with sparse search and K-d tree [16.141611031128427]
この問題を解決するために,スパース探索とK-d木を用いた密度ピーククラスタリングアルゴリズムを開発した。
分散特性が異なるデータセット上で、他の5つの典型的なクラスタリングアルゴリズムと比較して実験を行う。
論文 参考訳(メタデータ) (2022-03-02T09:29:40Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Fast Parallel Algorithms for Euclidean Minimum Spanning Tree and
Hierarchical Spatial Clustering [6.4805900740861]
HDBSCAN$*$のための私達のアルゴリズムの仕事そしてスペースを減らすために十分分離の新しい概念を導入します。
我々のアルゴリズムは理論的に効率的であることを示す: 彼らは逐次対応の作業(操作数)と多対数深さ(並列時間)を持っている。
48コアマシンを用いた大規模実世界および合成データセットの実験により、我々の最速のアルゴリズムは11.13-55.89x、既存の並列アルゴリズムを少なくとも桁違いに上回った。
論文 参考訳(メタデータ) (2021-04-02T16:05:00Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Quantum K-medians Algorithm Using Parallel Euclidean Distance Estimator [0.0]
本稿では,量子ユークリッド推定アルゴリズムを用いた効率的な量子k-メディアンクラスタリングアルゴリズムを提案する。
提案した量子k-メディアンアルゴリズムは、古典的なバージョンに比べて指数速度が向上した。
論文 参考訳(メタデータ) (2020-12-21T06:38:20Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
基本的なクラスタリング問題に対して,効率的な微分プライベートアルゴリズムを提案する。
この結果から,SampleとAggregateのプライバシーフレームワークのアルゴリズムの改善が示唆された。
1-Clusterアルゴリズムで使用されるツールの1つは、ClosestPairのより高速な量子アルゴリズムを適度な次元で得るために利用できる。
論文 参考訳(メタデータ) (2020-08-18T16:22:06Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
バイパルタイトbマッチングはアルゴリズム設計の基本であり、経済市場や労働市場などに広く適用されている。
既存の正確で近似的なアルゴリズムは、通常そのような設定で失敗する。
我々は、以前の事例から学んだ知識を活用して、新しい問題インスタンスを解決するtextttNeuSearcherを提案する。
論文 参考訳(メタデータ) (2020-05-09T02:48:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。