論文の概要: Incremental Learning for Multi-organ Segmentation with Partially Labeled
Datasets
- arxiv url: http://arxiv.org/abs/2103.04526v1
- Date: Mon, 8 Mar 2021 03:15:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-09 15:37:11.242370
- Title: Incremental Learning for Multi-organ Segmentation with Partially Labeled
Datasets
- Title(参考訳): 部分ラベル付きデータセットを用いた複数組織セグメンテーションのためのインクリメンタル学習
- Authors: Pengbo Liu, Li Xiao, S. Kevin Zhou
- Abstract要約: インクリメンタル学習(il)を通じて,マルチオーガンセグメンテーションモデルを学ぶ
各IL段階では、以前のアノテーションにアクセスできなくなり、その知識は現在のモデルによって推定される。
新しい臓器を含む臓器分割モデルを更新することを学びました。
- 参考スコア(独自算出の注目度): 8.370590211748087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There exists a large number of datasets for organ segmentation, which are
partially annotated, and sequentially constructed. A typical dataset is
constructed at a certain time by curating medical images and annotating the
organs of interest. In other words, new datasets with annotations of new organ
categories are built over time. To unleash the potential behind these partially
labeled, sequentially-constructed datasets, we propose to learn a multi-organ
segmentation model through incremental learning (IL). In each IL stage, we lose
access to the previous annotations, whose knowledge is assumingly captured by
the current model, and gain the access to a new dataset with annotations of new
organ categories, from which we learn to update the organ segmentation model to
include the new organs. We give the first attempt to conjecture that the
different distribution is the key reason for 'catastrophic forgetting' that
commonly exists in IL methods, and verify that IL has the natural adaptability
to medical image scenarios. Extensive experiments on five open-sourced datasets
are conducted to prove the effectiveness of our method and the conjecture
mentioned above.
- Abstract(参考訳): オルガンセグメンテーションのための多くのデータセットがあり、部分的に注釈付けされ、順次構築されている。
典型的なデータセットは、医療画像のキュレーションと興味ある臓器の注釈付けによって、一定時間で構築される。
言い換えれば、新しい臓器カテゴリのアノテーションを備えた新しいデータセットは、時間とともに構築される。
これらの部分ラベル付きシーケンシャルなデータセットの背後にあるポテンシャルを解き放つために、インクリメンタルラーニング(IL)を通して多臓器セグメンテーションモデルを学ぶことを提案する。
それぞれのilステージでは、知識が現在のモデルにキャプチャされるはずの以前のアノテーションへのアクセスを失い、新しい臓器カテゴリのアノテーションを備えた新しいデータセットにアクセスし、そこから臓器のセグメンテーションモデルを更新して、新しい臓器を含むようにすることを学びます。
本研究は, IL法に共通する「破滅的忘れ」の要因として, 異なる分布が重要であると推察し, 医用画像のシナリオに対して, ILが自然な適応性を持っていることを検証した。
提案手法の有効性を実証するために,5つのオープンソースデータセットの大規模な実験を行った。
関連論文リスト
- Deep Mutual Learning among Partially Labeled Datasets for Multi-Organ Segmentation [9.240202592825735]
本稿では,相互学習に基づく2段階多臓器分割手法を提案する。
第1段階では、各部分組織セグメンテーションモデルは、異なるデータセットから重複しない臓器ラベルを利用する。
第2段階では、各全組織セグメンテーションモデルは、擬似ラベル付き完全ラベル付きデータセットによって管理される。
論文 参考訳(メタデータ) (2024-07-17T14:41:25Z) - Universal and Extensible Language-Vision Models for Organ Segmentation and Tumor Detection from Abdominal Computed Tomography [50.08496922659307]
本稿では、単一のモデルであるUniversal Modelが複数の公開データセットに対処し、新しいクラスに適応することを可能にするユニバーサルフレームワークを提案する。
まず,大規模言語モデルからの言語埋め込みを利用した新しい言語駆動パラメータ生成手法を提案する。
第二に、従来の出力層は軽量でクラス固有のヘッドに置き換えられ、ユニバーサルモデルでは25の臓器と6種類の腫瘍を同時に分割することができる。
論文 参考訳(メタデータ) (2024-05-28T16:55:15Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - Continual Learning for Abdominal Multi-Organ and Tumor Segmentation [15.983529525062938]
本稿では,連続臓器と腫瘍のセグメンテーションに特化して設計されたイノベーティブなアーキテクチャを提案する。
提案する設計では,従来の出力層を軽量なクラス固有のヘッド群に置き換える。
これらのヘッドは、新しく導入され、以前に学習されたクラスの独立した予測を可能にし、古いクラスに対する新しいクラスの影響を効果的に最小化する。
論文 参考訳(メタデータ) (2023-06-01T17:59:57Z) - Tailored Multi-Organ Segmentation with Model Adaptation and Ensemble [22.82094545786408]
マルチ組織セグメンテーションは、医用画像解析の基本的な課題である。
高価な労働コストと専門知識のため、多臓器アノテーションの入手は通常制限される。
本稿では,モデル適応段とモデルアンサンブル段からなる新しい2段法を提案する。
論文 参考訳(メタデータ) (2023-04-14T13:39:39Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Learning Incrementally to Segment Multiple Organs in a CT Image [11.082692639365982]
マルチ組織セグメンテーションモデルを漸進的に学習することを提案する。
漸進的な学習段階では、以前のデータやアノテーションへのアクセスが失われます。
我々は,CT多臓器分節化において,このような弱点はほとんど消失することが実験的に確認された。
論文 参考訳(メタデータ) (2022-03-04T02:32:04Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
そこで我々は,アノテーション付きオルガンクラスから一般化されたオルガン概念を学習し,その概念を未知のクラスに転送するOrganNetを提案する。
そこで,OrganNetは臓器形態の幅広い変化に効果的に抵抗でき,一発分節タスクで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-30T13:41:12Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Multi-organ Segmentation via Co-training Weight-averaged Models from
Few-organ Datasets [45.14004510709325]
そこで本研究では,少数のデータセットから統一的なマルチ組織セグメンテーションネットワークを学習するための平均重み付きモデルを提案する。
ネットワーク間のノイズの多い指導を緩和するため、より信頼性の高いソフトラベルを作成するために、平均的な重み付けモデルを採用する。
論文 参考訳(メタデータ) (2020-08-17T08:39:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。