論文の概要: Content-Based Detection of Temporal Metadata Manipulation
- arxiv url: http://arxiv.org/abs/2103.04736v1
- Date: Mon, 8 Mar 2021 13:16:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-09 15:54:18.049253
- Title: Content-Based Detection of Temporal Metadata Manipulation
- Title(参考訳): 時間的メタデータ操作のコンテンツベース検出
- Authors: Rafael Padilha, Tawfiq Salem, Scott Workman, Fernanda A. Andal\'o,
Anderson Rocha and Nathan Jacobs
- Abstract要約: 画像の撮像時間とその内容と地理的位置とが一致しているかどうかを検証するためのエンドツーエンドのアプローチを提案する。
中心となる考え方は、画像の内容、キャプチャ時間、地理的位置が一致する確率を予測するための教師付き一貫性検証の利用である。
我々のアプローチは、大規模なベンチマークデータセットの以前の作業により改善され、分類精度が59.03%から81.07%に向上した。
- 参考スコア(独自算出の注目度): 91.34308819261905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most pictures shared online are accompanied by a temporal context (i.e., the
moment they were taken) that aids their understanding and the history behind
them. Claiming that these images were captured in a different moment can be
misleading and help to convey a distorted version of reality. In this work, we
present the nascent problem of detecting timestamp manipulation. We propose an
end-to-end approach to verify whether the purported time of capture of an image
is consistent with its content and geographic location. The central idea is the
use of supervised consistency verification, in which we predict the probability
that the image content, capture time, and geographical location are consistent.
We also include a pair of auxiliary tasks, which can be used to explain the
network decision. Our approach improves upon previous work on a large benchmark
dataset, increasing the classification accuracy from 59.03% to 81.07%. Finally,
an ablation study highlights the importance of various components of the
method, showing what types of tampering are detectable using our approach.
- Abstract(参考訳): オンラインで共有されるほとんどの写真には、その背景にある理解と歴史を支援する時間的コンテキスト(すなわち、撮影された瞬間)が伴っている。
これらの画像が別の瞬間に撮影されたという主張は誤解を招く可能性があり、歪んだ現実を伝えるのに役立ちます。
本稿では,タイムスタンプ操作を検知する新たな問題を提案する。
画像の撮像時間とその内容と地理的位置とが一致しているかどうかを検証するためのエンドツーエンドのアプローチを提案する。
中心となる考え方は、画像の内容、キャプチャ時間、地理的位置が一致する確率を予測するための教師付き一貫性検証の利用である。
また、ネットワーク決定を説明するために使用できる補助的なタスクのペアも含んでいます。
我々のアプローチは、大規模なベンチマークデータセットの以前の作業により改善され、分類精度が59.03%から81.07%に向上した。
最後に、アブレーション研究は、この手法の様々な構成要素の重要性を強調し、我々の手法を用いてどのような種類の改ざんが検出できるかを示す。
関連論文リスト
- Towards Consistent Object Detection via LiDAR-Camera Synergy [17.665362927472973]
物体の位置を点雲と画像の両方で検出できる既存のモデルは存在しない。
本稿では,エンドツーエンドの一貫性オブジェクト検出(COD)アルゴリズムフレームワークを提案する。
本稿では,点雲と画像間の物体相関の精度を評価するために,新しい評価指標である一貫性精度(Consistency Precision)を提案する。
論文 参考訳(メタデータ) (2024-05-02T13:04:26Z) - Shrinking the Semantic Gap: Spatial Pooling of Local Moment Invariants
for Copy-Move Forgery Detection [7.460203098159187]
Copy-move forgeryは、特定のパッチをコピー&ペーストして画像に貼り付ける操作で、潜在的に違法または非倫理的使用がある。
コピー・ムーブ・フォージェリーの法医学的手法の進歩は,検出精度とロバスト性の向上に寄与している。
自己相似性が高い画像や強い信号の破損のある画像の場合、既存のアルゴリズムはしばしば非効率なプロセスと信頼性の低い結果を示す。
論文 参考訳(メタデータ) (2022-07-19T09:11:43Z) - Do You Really Mean That? Content Driven Audio-Visual Deepfake Dataset
and Multimodal Method for Temporal Forgery Localization [19.490174583625862]
LAV-DF(Localized Audio Visual DeepFake)と呼ばれるコンテンツ駆動型オーディオビジュアルディープフェイクデータセットを導入する。
具体的には、映像全体の感情極性を変えるために、コンテンツ駆動型音声視覚操作を戦略的に行う。
提案手法の時間的フォージェリーローカライゼーションとディープフェイク検出タスクに対する強い性能を示す。
論文 参考訳(メタデータ) (2022-04-13T08:02:11Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
自己監督型ランドマーク検出における既存の研究は、画像から高密度(ピクセルレベルの)特徴表現を学習することに基づいている。
自己教師付き方式で高密度同変表現の学習を強化するアプローチを提案する。
機能抽出器にそのような先行性があることは,アノテーションの数が大幅に制限されている場合でも,ランドマーク検出に役立ちます。
論文 参考訳(メタデータ) (2022-04-06T17:48:18Z) - Leveraging Self-Supervision for Cross-Domain Crowd Counting [71.75102529797549]
混雑したシーンで人をカウントするための最先端の方法は、群衆密度を推定するために深いネットワークに依存します。
われわれのネットワークは、通常の画像から逆さまの実際の画像を認識できるように訓練し、その不確実性を予測する能力を組み込む。
このアルゴリズムは、推論時に余分な計算をせずに、最先端のクロスドメイン群をカウントするアルゴリズムを一貫して上回る。
論文 参考訳(メタデータ) (2021-03-30T12:37:55Z) - Data Augmentation for Object Detection via Differentiable Neural
Rendering [71.00447761415388]
注釈付きデータが乏しい場合、堅牢なオブジェクト検出器を訓練することは困難です。
この問題に対処する既存のアプローチには、ラベル付きデータからラベル付きデータを補間する半教師付き学習が含まれる。
オブジェクト検出のためのオフラインデータ拡張手法を導入し、新しいビューでトレーニングデータを意味的に補間する。
論文 参考訳(メタデータ) (2021-03-04T06:31:06Z) - Geography-Aware Self-Supervised Learning [79.4009241781968]
異なる特徴により、標準ベンチマークにおけるコントラスト学習と教師あり学習の間には、非自明なギャップが持続していることが示される。
本稿では,リモートセンシングデータの空間的整合性を利用した新しいトレーニング手法を提案する。
提案手法は,画像分類,オブジェクト検出,セマンティックセグメンテーションにおけるコントラスト学習と教師あり学習のギャップを埋めるものである。
論文 参考訳(メタデータ) (2020-11-19T17:29:13Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
移動可能なカメラで撮影された単一の画像で、自己教師付き検出とセグメンテーションのアプローチを導入する。
我々は、提案に基づくセグメンテーションネットワークのトレーニングに利用する自己教師付き損失関数を利用する。
本手法は,標準ベンチマークから視覚的に切り離された画像の人間の検出とセグメント化に応用し,既存の自己監督手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-11T08:34:40Z) - Semantic sensor fusion: from camera to sparse lidar information [7.489722641968593]
本稿では,異なる感覚情報,光検出・ランキング(ライダー)スキャン,カメラ画像の融合手法を提案する。
ラベル付き画像とライダー点雲間の意味情報の転送を4ステップで行う。
論文 参考訳(メタデータ) (2020-03-04T03:09:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。