A mechanically stable and tunable cryogenic Fabry-Perot microcavity
- URL: http://arxiv.org/abs/2103.04823v1
- Date: Fri, 5 Mar 2021 17:32:12 GMT
- Title: A mechanically stable and tunable cryogenic Fabry-Perot microcavity
- Authors: Yannik Fontana, Rigel Zifkin, Erika Janitz, Cesar Daniel Rodriguez
Rosenblueth, Lilian Childress
- Abstract summary: High-finesse, open-geometry microcavities have recently emerged as a versatile tool for enhancing interactions between photons and material systems.
We present the design and characterization of a system that can achieve $sim$16 pm-rms passive mechanical stability between two high-finesse mirrors.
Our results facilitate operation of a tunable, high-finesse cavity within a closed-cycle cryostat, representing an enabling technology for cavity coupling to a variety of solid-state systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-finesse, open-geometry microcavities have recently emerged as a
versatile tool for enhancing interactions between photons and material systems,
with a range of applications in quantum optics and quantum information science.
However, mechanical vibrations pose a considerable challenge to their operation
within a closed-cycle cryostat, particularly when spatial tunability and
free-space optical access are required. Here, we present the design and
characterization of a system that can achieve $\sim$16 pm-rms passive
mechanical stability between two high-finesse mirrors while permitting both
three-dimensional positioning of the cavity mode and free-space confocal
imaging. The design relies on two cascaded vibration isolation stages connected
by leaf springs that decouple axial and lateral motion, and incorporates
tuned-mass and magnetic damping. Furthermore, we present a technique for
quantifying cavity length displacements similar to or larger than the cavity
linewidth, allowing in-situ measurement of vibrations with and without active
feedback. Our results facilitate operation of a tunable, high-finesse cavity
within a closed-cycle cryostat, representing an enabling technology for cavity
coupling to a variety of solid-state systems.
Related papers
- Engineering biphoton spectral wavefunction in a silicon micro-ring resonator with split resonances [21.14676162428423]
Control of frequency-time amplitude of a photon's electric field has been demonstrated on platforms with second-order optical nonlinearity.
Here, we demonstrate a cavity-enhanced photon-pair source that can generate both separable states and controllable entangled states.
Experiments and simulations demonstrate the capacity to manipulate the frequency-domain wavefunction in a silicon-based device.
arXiv Detail & Related papers (2024-08-24T14:23:21Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - An Interferometrically Robust Opto-Mechanical Coupler to Beam
Polarisation [0.0]
We implement a tool for hybrid quantum systems that implements a transducer to map small position changes of a micro-mechanical membrane onto the polarization of a laser beam.
This is achieved with an interferometric setup that has reduced needs for stabilization.
arXiv Detail & Related papers (2023-01-11T17:11:48Z) - Interactive Entanglement in Hybrid Opto-magno-mechanics System [8.940638963985537]
We present a novel cavity opto-magno-mechanical hybrid system to generate entanglements among multiple quantum carriers.
Two Yttrium iron garnet (YIG) spheres are embedded in two separate microwave cavities which are joined by a communal mechanical resonator.
arXiv Detail & Related papers (2022-09-21T04:43:21Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Silicon-nitride nanosensors toward room temperature quantum
optomechanics [0.05391029385811007]
A well-established experimental platform is based on a thin film stoichiometric ($ Si_3 N_4 $) nanomembrane embedded in a Fabry-Perot cavity.
We investigate, theoretically and experimentally, the edge loss mechanisms comparing two state-of-the-art resonators built by standard micro/fabrication techniques.
arXiv Detail & Related papers (2021-04-29T12:41:16Z) - Open-cavity in closed-cycle cryostat as a quantum optics platform [47.50219326456544]
We present a fiber-based open Fabry-P'erot cavity in a closed-cycle cryostat exhibiting ultra-high mechanical stability.
This set of results manifests open-cavity in a closed-cycle cryostat as a versatile and powerful platform for low-temperature cavity QED experiments.
arXiv Detail & Related papers (2021-03-09T18:41:48Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.