Interactive Entanglement in Hybrid Opto-magno-mechanics System
- URL: http://arxiv.org/abs/2209.10120v2
- Date: Wed, 23 Nov 2022 11:26:41 GMT
- Title: Interactive Entanglement in Hybrid Opto-magno-mechanics System
- Authors: Jun Wang, Jing-Yu Pan, Ya-Bo Zhao, Jun Xiong and Hai-Bo Wang
- Abstract summary: We present a novel cavity opto-magno-mechanical hybrid system to generate entanglements among multiple quantum carriers.
Two Yttrium iron garnet (YIG) spheres are embedded in two separate microwave cavities which are joined by a communal mechanical resonator.
- Score: 8.940638963985537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel cavity opto-magno-mechanical hybrid system to generate
entanglements among multiple quantum carriers, such as magnons, mechanical
resonators, and cavity photons in both the optical and microwave domains. Two
Yttrium iron garnet (YIG) spheres are embedded in two separate microwave
cavities which are joined by a communal mechanical resonator. Because the
microwave cavities are separate, the ferromagnetic resonate frequencies of two
YIG spheres can be tuned independently, as well as the cavity frequencies. We
show that entanglement can be achieved with experimentally reachable
parameters. The entanglement is robust against environmental thermal noise,
owing to the mechanical cooling process achieved by the optical cavity. The
maximum entanglement among different carriers is achieved by optimizing the
parameters of the system. The individual tunability of the separated cavities
allows us to independently control the entanglement properties of different
subsystems and establish quantum channels with different entanglement
properties in one system. This work could provide promising applications in
quantum metrology and quantum information tasks.
Related papers
- Microwave-optics entanglement via coupled opto- and magnomechanical microspheres [6.9536044259987575]
Microwave-optics entanglement plays a crucial role in building hybrid quantum networks.
We present a new mechanism to prepare microwave-optics entanglement based on a hybrid system of two coupled opto- and magnomechanical microspheres.
arXiv Detail & Related papers (2024-08-07T14:15:55Z) - Bilateral photon emission from a vibrating mirror and multiphoton entanglement generation [1.0595929844849483]
Entanglement plays a crucial role in the development of quantum-enabled devices.
In this study, we explore a cavity resonator containing a two-sided perfect mirror.
We study $2n$-photon entanglement generation and bilateral photon pair emission.
arXiv Detail & Related papers (2024-02-06T19:21:42Z) - Distant entanglement via photon hopping in a coupled magnomechanical
system [0.0]
We find significant bipartite entanglement between indirectly coupled subsystems in coupled microwave cavities.
A single photon hopping parameter significantly affects both the degree as well as the transfer of quantum entanglement between various bipartitions.
arXiv Detail & Related papers (2023-07-18T16:43:43Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Multi-band Bose-Einstein condensate at four-particle scattering
resonance [47.187609203210705]
We show that magnon quantization for thin samples results in a new multi-band magnon condensate.
The most stable multi-band condensate is found in a narrow regime favoured on account of a resonance in the scattering between two bands.
arXiv Detail & Related papers (2022-01-26T16:32:58Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Nonreciprocal Transmission and Entanglement in a cavity-magnomechanical
system [10.520692160489133]
Quantum entanglement is generated with a cavity-magnomechanical system.
By breaking symmetry of the configuration, we realize nonreciprocal photon transmission and one-way bipartite quantum entanglement.
arXiv Detail & Related papers (2021-01-25T07:41:40Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Coherent coupling between multiple ferrimagnetic spheres and a microwave
cavity in the quantum-limit [0.0]
The spin resonance of electrons can be coupled to a microwave cavity mode to obtain a photon-magnon hybrid system.
In this article, the behavior of a large number of ferrimagnetic spheres coupled to a single cavity is put under test.
We show that novel applications of optimally-controlled hybrid systems can be foreseen for setups embedding a large number of samples.
arXiv Detail & Related papers (2020-07-17T11:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.