論文の概要: Risk Aware Optimization of Water Sensor Placement
- arxiv url: http://arxiv.org/abs/2103.04862v1
- Date: Mon, 8 Mar 2021 16:12:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-09 15:06:51.712978
- Title: Risk Aware Optimization of Water Sensor Placement
- Title(参考訳): 水センサ配置のリスクアウェア最適化
- Authors: Antonio Candelieri, Andrea Ponti, Francesco Archetti
- Abstract要約: センサ毎のデータ構造(時間的ヒートマップの集合)収集シミュレーションを提案する。
我々は問題固有の収束問題を検出する指標を特定する。
ベンチマークと実世界ネットワークの結果を提示します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal sensor placement (SP) usually minimizes an impact measure, such as
the amount of contaminated water or the number of inhabitants affected before
detection. The common choice is to minimize the minimum detection time (MDT)
averaged over a set of contamination events, with contaminant injected at a
different location. Given a SP, propagation is simulated through a hydraulic
software model of the network to obtain spatio-temporal concentrations and the
average MDT. Searching for an optimal SP is NP-hard: even for mid-size
networks, efficient search methods are required, among which evolutionary
approaches are often used. A bi-objective formalization is proposed: minimizing
the average MDT and its standard deviation, that is the risk to detect some
contamination event too late than the average MDT. We propose a data structure
(sort of spatio-temporal heatmap) collecting simulation outcomes for every SP
and particularly suitable for evolutionary optimization. Indeed, the proposed
data structure enabled a convergence analysis of a population-based algorithm,
leading to the identification of indicators for detecting problem-specific
converge issues which could be generalized to other similar problems. We used
Pymoo, a recent Python framework flexible enough to incorporate our problem
specific termination criterion. Results on a benchmark and a real-world network
are presented.
- Abstract(参考訳): 最適なセンサ配置(sp)は通常、汚染水の量や検出前に影響を受ける住民の数など、衝撃測定を最小化する。
一般的な選択は、汚染イベントのセットで平均される最小検出時間(MDT)を最小化することであり、汚染物質は別の場所で注入される。
SPが与えられると、伝播はネットワークの油圧ソフトウェアモデルを通してシミュレートされ、時空間濃度と平均MSTを得る。
最適SPの探索はNPハードであり、中規模ネットワークでも効率的な探索法が必要であり、進化的アプローチがよく用いられる。
平均MDTとその標準偏差を最小化することは、平均MDTよりも遅すぎる汚染事象を検出するリスクである。
本論文では,SP毎にシミュレーション結果を収集し,特に進化的最適化に適したデータ構造(時空間ヒートマップの組)を提案する。
実際、提案されたデータ構造は集団ベースのアルゴリズムの収束解析を可能にし、他の類似の問題に一般化できる問題固有の収束問題を検出する指標の同定につながった。
Pymooは、問題の特定終了基準を組み込むのに十分な柔軟性を備えた最近のPythonフレームワークです。
ベンチマークと実世界ネットワークの結果を提示します。
関連論文リスト
- PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Partially-Observable Sequential Change-Point Detection for Autocorrelated Data via Upper Confidence Region [12.645304808491309]
逐次変化点検出のための状態空間モデル(AUCRSS)を用いたアダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・
SSMのオンライン推論のために部分的に観測可能なカルマンフィルタアルゴリズムを開発し、一般化された確率比テストに基づく変化点検出スキームを解析する。
論文 参考訳(メタデータ) (2024-03-30T02:32:53Z) - An Evaluation of Real-time Adaptive Sampling Change Point Detection Algorithm using KCUSUM [4.610597418629838]
本稿では,Kernel-based Cumulative Sum (KCUSUM)アルゴリズムを導入し,従来のCumulative Sum (CUSUM) 法を非パラメトリック拡張する。
KCUSUMは、入ってくるサンプルを参照サンプルと直接比較することで自身を分割し、最大平均離散(MMD)非パラメトリックフレームワークに基礎を置く統計を計算する。
我々は,NWChem CODARやタンパク質折り畳みデータなどの科学シミュレーションによる実世界のユースケースについて論じ,オンライン変化点検出におけるKCUSUMの有効性を実証した。
論文 参考訳(メタデータ) (2024-02-15T19:45:24Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
教師なし異常検出(UAD)は多くの研究の関心を集め、幅広い応用を推進している。
不明瞭だが強力な統計モデルである正規化フローは、教師なしの方法で異常検出と局所化に適している。
非対称な並列フローと融合フローからなるMSFlowと呼ばれる新しいマルチスケールフローベースフレームワークを提案する。
我々のMSFlowは、検出AUORCスコアが99.7%、ローカライゼーションAUCROCスコアが98.8%、プロスコアが97.1%の新たな最先端技術を実現している。
論文 参考訳(メタデータ) (2023-08-29T13:38:35Z) - Window-Based Distribution Shift Detection for Deep Neural Networks [21.73028341299301]
本研究では,データストリームを受信したディープニューラルネットワーク(DNN)の正常動作をモニタリングする場合について検討する。
選択的予測原理を用いて,DNNの分布偏差検出手法を提案する。
我々の新しい検出法は、最先端技術よりもかなり少ない時間を消費しながら、オンパー以上の性能を発揮する。
論文 参考訳(メタデータ) (2022-10-19T21:27:25Z) - Super-resolution GANs of randomly-seeded fields [68.8204255655161]
ランダムスパースセンサからフィールド量の推定を行うための,GAN(Super- resolution Generative Adversarial Network)フレームワークを提案する。
このアルゴリズムはランダムサンプリングを利用して、高解像度の基底分布の不完全ビューを提供する。
提案手法は, 流体流動シミュレーション, 海洋表面温度分布測定, 粒子画像速度測定データの合成データベースを用いて検証した。
論文 参考訳(メタデータ) (2022-02-23T18:57:53Z) - Hankel-structured Tensor Robust PCA for Multivariate Traffic Time Series
Anomaly Detection [9.067182100565695]
本研究では,空間データにおける異常検出のためのRPCAのハンケル構造テンソルバージョンを提案する。
劣化した行列を低ランクのハンケルテンソルとスパース行列に分解する。
本手法は, 合成データと乗客フロー時系列を用いて評価する。
論文 参考訳(メタデータ) (2021-10-08T19:35:39Z) - Fast Batch Nuclear-norm Maximization and Minimization for Robust Domain
Adaptation [154.2195491708548]
ランダムに選択されたデータバッチの分類出力行列の構造について検討し,予測可能性と多様性について検討した。
本稿では,目標出力行列上で核ノルムを行い,目標予測能力を向上するBatch Nuclear-norm Maximization and Minimizationを提案する。
実験により,本手法は3つの典型的なドメイン適応シナリオにおいて適応精度とロバスト性を高めることができることが示された。
論文 参考訳(メタデータ) (2021-07-13T15:08:32Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Rapid Risk Minimization with Bayesian Models Through Deep Learning
Approximation [9.93116974480156]
本稿では,ベイズモデル (BM) とニューラルネットワーク (NN) を組み合わせて,予測を最小限のリスクで行う手法を提案する。
私たちのアプローチは、BMのデータ効率と解釈可能性とNNの速度を組み合わせます。
テストデータセットに無視できる損失がある標準手法よりも、リスク最小限の予測をはるかに高速に達成する。
論文 参考訳(メタデータ) (2021-03-29T15:08:25Z) - Optimal Sequential Detection of Signals with Unknown Appearance and
Disappearance Points in Time [64.26593350748401]
本論文は、変化の期間が有限で未知であると仮定して、逐次的な変化点検出問題に対処する。
我々は、所定の時間(または空間)ウィンドウにおける最小検出確率を最大化する信頼性の高い最大変更検出基準に焦点を当てる。
FMAアルゴリズムは、光学画像中の衛星のかすかなストリークを検出するために応用される。
論文 参考訳(メタデータ) (2021-02-02T04:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。