論文の概要: PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection
- arxiv url: http://arxiv.org/abs/2406.02318v2
- Date: Thu, 4 Jul 2024 11:00:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 22:44:48.648817
- Title: PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection
- Title(参考訳): PeFAD: 時系列異常検出のためのパラメータ効率の良いフェデレーションフレームワーク
- Authors: Ronghui Xu, Hao Miao, Senzhang Wang, Philip S. Yu, Jianxin Wang,
- Abstract要約: 私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
- 参考スコア(独自算出の注目度): 51.20479454379662
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the proliferation of mobile sensing techniques, huge amounts of time series data are generated and accumulated in various domains, fueling plenty of real-world applications. In this setting, time series anomaly detection is practically important. It endeavors to identify deviant samples from the normal sample distribution in time series. Existing approaches generally assume that all the time series is available at a central location. However, we are witnessing the decentralized collection of time series due to the deployment of various edge devices. To bridge the gap between the decentralized time series data and the centralized anomaly detection algorithms, we propose a Parameter-efficient Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns. PeFAD for the first time employs the pre-trained language model (PLM) as the body of the client's local model, which can benefit from its cross-modality knowledge transfer capability. To reduce the communication overhead and local model adaptation cost, we propose a parameter-efficient federated training module such that clients only need to fine-tune small-scale parameters and transmit them to the server for update. PeFAD utilizes a novel anomaly-driven mask selection strategy to mitigate the impact of neglected anomalies during training. A knowledge distillation operation on a synthetic privacy-preserving dataset that is shared by all the clients is also proposed to address the data heterogeneity issue across clients. We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
- Abstract(参考訳): モバイルセンシング技術の普及に伴い、様々な領域に膨大な時系列データが生成・蓄積され、多くの実世界の応用が促進される。
この設定では、時系列異常検出が実質的に重要である。
時系列において、通常のサンプル分布から逸脱したサンプルを識別する。
既存のアプローチは通常、すべての時系列が中央の場所で利用可能であると仮定する。
しかし、さまざまなエッジデバイスが配置されているため、時系列の分散収集が目撃されている。
分散時系列データと集中型異常検出アルゴリズムのギャップを埋めるため,PeFADというパラメータ効率の高いフェデレーション異常検出フレームワークを提案する。
PeFADは、クライアントのローカルモデルの本体として、学習済み言語モデル(PLM)を初めて採用し、モダリティ間の知識伝達能力の恩恵を受けることができる。
通信オーバヘッドとローカルモデル適応コストを低減するため,クライアントが小さなパラメータを微調整し,更新のためにサーバに送信するだけでよい,パラメータ効率のよいフェデレーショントレーニングモジュールを提案する。
PeFADは、トレーニング中に無視された異常の影響を軽減するために、新しい異常駆動マスク選択戦略を利用している。
また,全クライアントが共有する合成プライバシ保存データセット上での知識蒸留操作も提案し,クライアント間のデータ不均一性問題に対処する。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
関連論文リスト
- Modality Alignment Meets Federated Broadcasting [9.752555511824593]
フェデレートラーニング(FL)は、ローカルデータを集中化せずに、分散エッジデバイス間でモデルをトレーニングすることで、データのプライバシを保護する強力なアプローチとして登場した。
本稿では,テキストエンコーダをサーバ上に配置し,画像エンコーダをローカルデバイス上で動作させる,モダリティアライメントを利用した新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-24T13:30:03Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays [0.0]
フェデレートラーニング(FL)は、データを複数の場所に保持するモデル("clients")をセキュアにトレーニングするために提案されている。
FLアルゴリズムの性能を阻害する2つの大きな課題は、階層化クライアントによって引き起こされる長いトレーニング時間と、非イドローカルなデータ分布("client drift")によるモデル精度の低下である。
本稿では,Asynchronous Exact Averaging (AREA, Asynchronous Exact Averaging) を提案する。Asynchronous Exact Averaging (AREA) は,通信を利用して収束を高速化し,拡張性を向上し,クライアント更新頻度の変動によるクライアントのドリフトの補正にクライアントメモリを利用する。
論文 参考訳(メタデータ) (2024-05-16T14:22:49Z) - Anomaly Detection through Unsupervised Federated Learning [0.0]
フェデレートラーニングは、分散リソースを活用する上で最も有望なパラダイムの1つであることが証明されています。
本稿では,前処理フェーズを通じて,クライアントをコミュニティにグループ化する手法を提案する。
結果の異常検出モデルは共有され、同じコミュニティのクライアント内の異常を検出するために使用される。
論文 参考訳(メタデータ) (2022-09-09T08:45:47Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
人物再識別(re-ID)におけるフェデレーションドメイン一般化(FedDG)の問題について検討する。
一般化された局所的・グローバルなモデルを学ぶための多様な特徴を創出する手法として,DFH (Domain and Feature Hallucinating) を提案する。
提案手法は4つの大規模re-IDベンチマークにおいてFedDGの最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-05T09:15:13Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Federated Multi-Target Domain Adaptation [99.93375364579484]
フェデレートされた学習手法により、プライバシを保護しながら、分散ユーザデータ上で機械学習モデルをトレーニングすることが可能になります。
分散クライアントデータがラベル付けされず、集中型ラベル付きデータセットがサーバ上で利用可能となる、より実用的なシナリオを考えます。
本稿では,新しい課題に対処する効果的なDualAdapt法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:53:05Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Anomaly Detection at Scale: The Case for Deep Distributional Time Series
Models [14.621700495712647]
我々のアプローチの主な特徴は、実値または実値のベクトルからなる時系列をモデル化するのではなく、実値(またはベクトル)上の確率分布の時系列をモデル化することである。
本手法は,数百万の時系列上の異常検出とスケールのストリーミングに有効である。
我々は,オープンソースの異常検出ツールを,実世界のデータセットに対する平均17%の改善率で上回っていることを示す。
論文 参考訳(メタデータ) (2020-07-30T15:48:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。